Abstract
Prototype-based models offer an intuitive interface to given data sets by means of an inspection of the model prototypes. Supervised classification can be achieved by popular techniques such as learning vector quantization (LVQ) and extensions derived from cost functions such as generalized LVQ (GLVQ) and robust soft LVQ (RSLVQ). These methods, however, are restricted to Euclidean vectors and they cannot be used if data are characterized by a general dissimilarity matrix. In this approach, we propose relational extensions of GLVQ and RSLVQ which can directly be applied to general possibly non-Euclidean data sets characterized by a symmetric dissimilarity matrix.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ Network for Vector Quantization and Its Application to Time-series Prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc. (2001)
Bishop, C., Svensen, M., Williams, C.: The Generative Topographic Mapping. Neural Computation 10(1), 215–234 (1998)
Sato, A., Yamada, K.: Generalized Learning Vector Quantization. In: Proceedings of the 1995 Conference Advances in Neural Information Processing Systems, vol. 8, pp. 423–429. MIT Press, Cambridge (1996)
Seo, S., Obermayer, K.: Soft Learning Vector Quantization. Neural Computation 15(7), 1589–1604 (2003)
Hammer, B., Villmann, T.: Generalized Relevance Learning Vector Quantization. Neural Networks 15(8-9), 1059–1068 (2002)
Schneider, P., Biehl, M., Hammer, B.: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12), 3532–3561 (2009)
Denecke, A., Wersing, H., Steil, J.J., Koerner, E.: Online Figure-Ground Segmentation with Adaptive Metrics in Generalized LVQ. Neurocomputing 72(7-9), 1470–1482 (2009)
Kietzmann, T., Lange, S., Riedmiller, M.: Incremental GRLVQ: Learning Relevant Features for 3D Object Recognition. Neurocomputing 71(13-15), 2868–2879 (2008)
Alex, N., Hasenfuss, A., Hammer, B.: Patch Clustering for Massive Data Sets. Neurocomputing 72(7-9), 1455–1469 (2009)
Qin, A.K., Suganthan, P.N.: A Novel Kernel Prototype-based Learning Algorithm. In: Proc. of ICPR 2004, pp. 621–624 (2004)
Hammer, B., Hasenfuss, A.: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9), 2229–2284 (2010)
Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Singapore (2005)
Schneider, P., Biehl, M., Hammer, B.: Hyperparameter Learning in Probabilistic Prototype-based Models. Neurocomputing 73(7-9), 1117–1124 (2010)
Seo, S., Obermayer, K.: Dynamic Hyperparameter Scaling Method for LVQ Algorithms. In: IJCNN, pp. 3196–3203 (2006)
Chen, Y., Eric, K.G., Maya, R.G., Ali, R.L.C.: Similarity-based Classification: Concepts and Algorithms. Journal of Machine Learning Research 10, 747–776 (2009)
Neuhaus, M., Bunke, H.: Edit Distance Based Kernel functions for Structural Pattern Classification. Pattern Recognition 39(10), 1852–1863 (2006)
Haasdonk, B., Bahlmann, C.: Learning with Distance Substitution Kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004)
Lundsteen, C., Phillip, J., Granum, E.: Quantitative Analysis of 6985 Digitized Trypsin g-banded Human Metaphase Chromosomes. Clinical Genetics 18, 355–370 (1980)
Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and Reliable maldi-tof ms–based Microorganism Identification. Nature Methods 3 (2006)
Barbuddhe, S.B., Maier, T., Schwarz, G., Kostrzewa, M., Hof, H., Domann, E., Chakraborty, T., Hain, T.: Rapid Identification and Typing of Listeria Species by Matrix-assisted Laser Desorption Ionization-time of Flight Mass Spectrometry. Applied and Environmental Microbiology 74(17), 5402–5407 (2008)
Gisbrecht, A., Hammer, B., Schleif, F.-M., Zhu, X.: Accelerating Dissimilarity Clustering for Biomedical Data Analysis. In: Proceedings of SSCI (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hammer, B., Schleif, FM., Zhu, X. (2011). Relational Extensions of Learning Vector Quantization. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24958-7_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-24958-7_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24957-0
Online ISBN: 978-3-642-24958-7
eBook Packages: Computer ScienceComputer Science (R0)