Relational Extensions of Learning Vector Quantization | SpringerLink
Skip to main content

Relational Extensions of Learning Vector Quantization

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7063))

Included in the following conference series:

Abstract

Prototype-based models offer an intuitive interface to given data sets by means of an inspection of the model prototypes. Supervised classification can be achieved by popular techniques such as learning vector quantization (LVQ) and extensions derived from cost functions such as generalized LVQ (GLVQ) and robust soft LVQ (RSLVQ). These methods, however, are restricted to Euclidean vectors and they cannot be used if data are characterized by a general dissimilarity matrix. In this approach, we propose relational extensions of GLVQ and RSLVQ which can directly be applied to general possibly non-Euclidean data sets characterized by a symmetric dissimilarity matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ Network for Vector Quantization and Its Application to Time-series Prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  2. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc. (2001)

    Google Scholar 

  3. Bishop, C., Svensen, M., Williams, C.: The Generative Topographic Mapping. Neural Computation 10(1), 215–234 (1998)

    Article  MATH  Google Scholar 

  4. Sato, A., Yamada, K.: Generalized Learning Vector Quantization. In: Proceedings of the 1995 Conference Advances in Neural Information Processing Systems, vol. 8, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Seo, S., Obermayer, K.: Soft Learning Vector Quantization. Neural Computation 15(7), 1589–1604 (2003)

    Article  MATH  Google Scholar 

  6. Hammer, B., Villmann, T.: Generalized Relevance Learning Vector Quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  7. Schneider, P., Biehl, M., Hammer, B.: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12), 3532–3561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Denecke, A., Wersing, H., Steil, J.J., Koerner, E.: Online Figure-Ground Segmentation with Adaptive Metrics in Generalized LVQ. Neurocomputing 72(7-9), 1470–1482 (2009)

    Article  Google Scholar 

  9. Kietzmann, T., Lange, S., Riedmiller, M.: Incremental GRLVQ: Learning Relevant Features for 3D Object Recognition. Neurocomputing 71(13-15), 2868–2879 (2008)

    Article  Google Scholar 

  10. Alex, N., Hasenfuss, A., Hammer, B.: Patch Clustering for Massive Data Sets. Neurocomputing 72(7-9), 1455–1469 (2009)

    Article  Google Scholar 

  11. Qin, A.K., Suganthan, P.N.: A Novel Kernel Prototype-based Learning Algorithm. In: Proc. of ICPR 2004, pp. 621–624 (2004)

    Google Scholar 

  12. Hammer, B., Hasenfuss, A.: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9), 2229–2284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  14. Schneider, P., Biehl, M., Hammer, B.: Hyperparameter Learning in Probabilistic Prototype-based Models. Neurocomputing 73(7-9), 1117–1124 (2010)

    Article  Google Scholar 

  15. Seo, S., Obermayer, K.: Dynamic Hyperparameter Scaling Method for LVQ Algorithms. In: IJCNN, pp. 3196–3203 (2006)

    Google Scholar 

  16. Chen, Y., Eric, K.G., Maya, R.G., Ali, R.L.C.: Similarity-based Classification: Concepts and Algorithms. Journal of Machine Learning Research 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Neuhaus, M., Bunke, H.: Edit Distance Based Kernel functions for Structural Pattern Classification. Pattern Recognition 39(10), 1852–1863 (2006)

    Article  MATH  Google Scholar 

  18. Haasdonk, B., Bahlmann, C.: Learning with Distance Substitution Kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Lundsteen, C., Phillip, J., Granum, E.: Quantitative Analysis of 6985 Digitized Trypsin g-banded Human Metaphase Chromosomes. Clinical Genetics 18, 355–370 (1980)

    Article  Google Scholar 

  20. Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and Reliable maldi-tof ms–based Microorganism Identification. Nature Methods 3 (2006)

    Google Scholar 

  21. Barbuddhe, S.B., Maier, T., Schwarz, G., Kostrzewa, M., Hof, H., Domann, E., Chakraborty, T., Hain, T.: Rapid Identification and Typing of Listeria Species by Matrix-assisted Laser Desorption Ionization-time of Flight Mass Spectrometry. Applied and Environmental Microbiology 74(17), 5402–5407 (2008)

    Article  Google Scholar 

  22. Gisbrecht, A., Hammer, B., Schleif, F.-M., Zhu, X.: Accelerating Dissimilarity Clustering for Biomedical Data Analysis. In: Proceedings of SSCI (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hammer, B., Schleif, FM., Zhu, X. (2011). Relational Extensions of Learning Vector Quantization. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24958-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24958-7_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24957-0

  • Online ISBN: 978-3-642-24958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics