Variational Image Denoising with Adaptive Constraint Sets | SpringerLink
Skip to main content

Variational Image Denoising with Adaptive Constraint Sets

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

  • 2717 Accesses

Abstract

We propose a generalization of the total variation (TV) minimization method proposed by Rudin, Osher and Fatemi. This generalization allows for adaptive regularization, which depends on the minimizer itself. Existence theory is provided in the framework of quasi-variational inequalities. We demonstrate the usability of our approach by considering applications for image and movie denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berkels, B., Burger, M., Droske, M., Nemitz, O., Rumpf, M.: Cartoon extraction based on anisotropic image classification. In: Vision, Modeling, and Visualization Proceedings, pp. 293–300 (2006)

    Google Scholar 

  2. Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.: Convex Analysis and Optimization (2003)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1–2), 89–97 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Chan, D., Pang, T.S.: The generalized quasi-variational inequality problem. Math. Operat. Res. 7(2), 211–222 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dong, Y., Hintermüller, M.: Multi-scale total variation with automated regularization parameter selection for color image restoration. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 271–281. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Eberly, D.: Distance from a point to an ellipse in 2D. Technical report (2002)

    Google Scholar 

  8. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grasmair, M.: Locally adaptive total variation regularization. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 331–342. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Grasmair, M., Lenzen, F.: Anisotropic Total Variation Filtering. Appl. Math. Optim. 62(3), 323–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rellich, F.: Störungstheorie der Spektralzerlegung, I. Math. Ann (1936)

    Google Scholar 

  13. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Setzer, S., Steidl, G., Teuber, T.: Restoration of images with rotated shapes. Numerical Algorithms 48, 49–66 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Steidl, G., Teuber, T.: Anisotropic smoothing using double orientations. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 477–489. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Wilkinson, J.H.: The algebraic eigenvalue problem. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lenzen, F., Becker, F., Lellmann, J., Petra, S., Schnörr, C. (2012). Variational Image Denoising with Adaptive Constraint Sets. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics