Abstract
This paper introduces an additive fuzzy clustering model for similarity data as oriented towards representation and visualization of activities of research organizations in a hierarchical taxonomy of the field. We propose a one-by-one cluster extracting strategy which leads to a version of spectral clustering approach for similarity data. The derived fuzzy clustering method, FADDIS, is experimentally verified both on the research activity data and in comparison with two state-of-the-art fuzzy clustering methods. Two developed simulated data generators, affinity data of Gaussian clusters and genuine additive similarity data, are described, and comparison of the results over this data are reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ACM Computing Classification System (1998), http://www.acm.org/about/class/1998 (Cited September 9, 2008)
Bezdek, J., Hathaway, R., Windham, M.: Numerical comparisons of the RFCM and AP algorithms for clustering relational data. Pattern Recognition 24, 783–791 (1991)
Bezdek, J., Keller, J., Krishnapuram, R., Pal, T.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers, Dordrecht (1999)
Bezdek, J.C., Hathaway, R.J.: VAT: a tool for visual assessment of (cluster) tendency. In: Procs. of the 2002 International Joint Conference on Neural Networks (IJCNN 2002), pp. 2225–2230 (2002)
Brouwer, R.: A method of relational fuzzy clustering based on producing feature vectors using FastMap. Information Sciences 179, 3561–3582 (2009)
Castellano, G., Torsello, M.A.: How to derive fuzzy user categories for web personalization. In: Castellano, G., Jain, L.C., Fanelli, A.M. (eds.) Web Personalization in Intelligent Environments. SCI, vol. 229, pp. 65–79. Springer, Heidelberg (2009)
Davé, R., Sen, S.: Robust fuzzy clustering of relational data. IEEE Transactions on Fuzzy Systems 10, 713–727 (2002)
Felizardo, R.: A study on parallel versus sequential relational fuzzy clustering methods, Master thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, p. 212 (2011)
Hathaway, R., Davenport, J., Bezdek, J.: Relational duals of the c-means algorithms. Pattern Recognition 22, 205–212 (1989)
Hathaway, R.J., Bezdek, J.C.: NERF c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition 27, 429–437 (1994)
Huang, L., Yan, D., Jordan, M.I., Taft, N.: Spectral clustering with perturbed data. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems, vol. 21, pp. 705–712. MIT Press, Vancouver (2009)
Hubert, L.J., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218 (1985)
Inoue, K., Urahama, K.: Sequential fuzzy cluster extraction by a graph spectral method. Pattern Recognition Letters 20, 699–705 (1999)
Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low-complexity fuzzy relational clustering algorithms for Web mining. IEEE Transactions on Fuzzy Systems 9(4), 595–607 (2001)
von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17, 395–416 (2007)
Masullia, F., Mitra, S.: Natural computing methods in bioinformatics: A survey. Information Fusion 10(3), 211–216 (2009)
Mirkin, B.: Additive clustering and qualitative factor analysis methods for similarity matrices. Journal of Classification 4(1), 7–31 (1987)
Mirkin, B., Nascimento, S.: Analysis of Community Structure, Affinity Data and Research Activities using Additive Fuzzy Spectral Clustering. Technical Report 6, School of Computer Science, Birkbeck University of London (2009)
Mirkin, B., Nascimento, S., Pereira, L.M.: Cluster-lift method for mapping research activities over a concept tree. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning II. SCI, vol. 263, pp. 245–257. Springer, Heidelberg (2010)
Mirkin, B., Nascimento, S., Fenner, T., Pereira, L.M.: Constructing and Mapping Fuzzy Thematic Clusters to Higher Ranks in a Taxonomy. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS (LNAI), vol. 6291, pp. 329–340. Springer, Heidelberg (2010)
Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion Maps, Spectral Clustering and Reaction Coordinates of Dynamical Systems. Applied and Computational Harmonic Analysis (21), 113–127 (2006)
Nasraoui, O., Frigui, H.: Extracting Web User Profiles Using Relational Competitive Fuzzy Clustering. International Journal on Artificial Intelligence Tools (IJAIT) 9(4), 509–526 (2000)
Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Ditterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 849–856. MIT Press, Cambridge (2002)
Pal, N.R., Aguan, K., Sharma, A., Amari, S.: Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering. BMC Bioinformatics, 8(1)(5) (2007)
Popescu, M., Keller, J.M., Mitchell, J.A.: Fuzzy Measures on the Gene Ontology for Gene Product Similarity. Journal IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 3(3), 263–274 (2006)
Roubens, M.: Pattern classification problems and fuzzy sets. Fuzzy Sets and Systems 1, 239–253 (1978)
Runkler, T.A., Bezdek, J.C.: Web mining with relational clustering. International Journal of Approximate Reasoning, Elsevier Science 32(2-3), 217–236 (2003)
Sato, M., Sato, Y., Jain, L.C.: Fuzzy Clustering Models and Applications. Physica, Heidelberg (1997)
Shepard, R.N., Arabie, P.: Additive clustering: representation of similarities as combinations of overlapping properties. Psychological Review 86, 87–123 (1979)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Sledge, I.J., Bezdek, J.C., Havens, T.C., Keller, J.M.: Relational Generalizations of Cluster Validity Indices. IEEE Transactions on Fuzzy Systems 18(4), 771–786 (2010)
Suryavanshi, B.S., Shiri, N., Mudur, S.P.: An Efficient Technique for Mining Usage Profiles Using Relational Fuzzy Subtractive Clustering. In: Procs. of the International Workshop on Challenges in Web Information Retrieval and Integration (WIRI 2005), pp. 23–29 (2005)
Windham, M.P.: Numerical classification of proximity data with assignment measures. Journal of Classification 2, 157–172 (1985)
Xu, D., Keller, J.M., Popescu, M., Bondugula, R.: Applications of Fuzzy Logic in Bioinformatics. Imperial College Press, London (2008)
Yang, M., Shih, H.: Cluster analysis based on fuzzy relations. Fuzzy Sets and Systems 120, 197–212 (2001)
Zhang, S., Wang, R.-S., Zhang, X.-S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A 374, 483–490 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nascimento, S., Felizardo, R., Mirkin, B. (2011). Thematic Fuzzy Clusters with an Additive Spectral Approach. In: Antunes, L., Pinto, H.S. (eds) Progress in Artificial Intelligence. EPIA 2011. Lecture Notes in Computer Science(), vol 7026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24769-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-24769-9_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24768-2
Online ISBN: 978-3-642-24769-9
eBook Packages: Computer ScienceComputer Science (R0)