The Meccano Method for Isogeometric Solid Modeling | SpringerLink
Skip to main content

The Meccano Method for Isogeometric Solid Modeling

  • Conference paper
Proceedings of the 20th International Meshing Roundtable

Summary

We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. The proposed technique only demands the surface of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and a simple parametric domain. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying the meccano method. The control points of the trivariate T-spline are calculated by imposing the interpolation conditions on points situated both on the inner and on the surface of the solid. The distribution of the interpolating points is adapted to the singularities of the domain in order to preserve the features of the surface triangulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 42899
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programing: Theory and algorithms. John Wiley and Sons Inc., New York (1993)

    MATH  Google Scholar 

  2. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Meth. Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis: Toward unification of computer aided design and finite element analysis. In: Trends in Engineering Computational Technology, pp. 1–16. Saxe-Coburg Publications, Stirling (2008)

    Chapter  Google Scholar 

  4. Borouchaki, H., Frey, P.J.: Simplification of surface mesh using Hausdorff envelope. Comput. Meth. Appl. Mech. Eng. 194, 4864–4884 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buffa, A., Cho, D., Sangalli, G.: Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput. Meth. Appl. Mech. Eng. 199, 1437–1445 (2010)

    Article  MathSciNet  Google Scholar 

  6. Carey, G.F., Oden, J.T.: Finite elements, a second course. Prentice-Hall, New Jersey (1982)

    Google Scholar 

  7. Cascón, J.M., Montenegro, R., Escobar, J.M., Rodríguez, E., Montero, G.: A new meccano technique for adaptive 3-D triangulations. In: Proc. 16th Int. Meshing Roundtable, pp. 103–120. Springer, Berlin (2007)

    Google Scholar 

  8. Cascón, J.M., Montenegro, R., Escobar, J.M., Rodríguez, E., Montero, G.: The meccano method for automatic tetrahedral mesh generation of complex genus-zero solids. In: Proc. 18th Int. Meshing Roundtable, pp. 463–480. Springer, Berlin (2009)

    Chapter  Google Scholar 

  9. Cohen, E., Martin, T., Kirby, R.M., Lyche, T., Riesenfeld, R.F.: Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis. Comput. Meth. Appl. Mech. Eng. 199, 334–356 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Chichester (2009)

    Google Scholar 

  11. Escobar, J.M., Rodríguez, E., Montenegro, R., Montero, G., González-Yuste, J.M.: Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Meth. Appl. Mech. Eng. 192, 2775–2787 (2003)

    Article  MATH  Google Scholar 

  12. Escobar, J.M., Rodríguez, E., Montenegro, R., Montero, G., González-Yuste, J.M.: SUS Code − Simultaneous mesh untangling and smoothing code (2010), http://www.dca.iusiani.ulpgc.es/proyecto2008-2011

  13. Escobar, J.M., Cascón, J.M., Rodríguez, E., Montenegro, R.: A new approach to solid modeling with trivariate T-splines based on mesh optimization. Comput. Meth. Appl. Mech. Eng. (2011), doi:10.1016/j.cma, 07.004

    Google Scholar 

  14. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aid. Geom. Design 14, 231–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Floater, M.S.: Mean Value Coordinates. Comput. Aid. Geom. Design 20, 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Floater, M.S., Hormann, K.: Surface parameterization: A tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pp. 157–186. Springer, Berlin (2005)

    Chapter  Google Scholar 

  17. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: Theory and practice. In: SIGGRAPH 2007: ACM SIGGRAPH, Courses. ACM Press, New York (2007)

    Google Scholar 

  18. Knupp, P.M.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23, 193–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kossaczky, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, X., Guo, X., Wang, H., He, Y., Gu, X., Qin, H.: Harmonic Volumetric Mapping for Solid Modeling Applications. In: Proc. of ACM Solid and Physical Modeling Symposium, pp. 109–120. Association for Computing Machinery, Inc. (2007)

    Google Scholar 

  21. Lin, J., Jin, X., Fan, Z., Wang, C.C.L.: Automatic PolyCube-Maps. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 3–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Li, B., Li, X., Wang, K.: Generalized PolyCube trivariate splines. In: SMI 2010 - Int. Conf. Shape Modeling and Applications, pp. 261–265 (2010)

    Google Scholar 

  23. Martin, T., Cohen, E., Kirby, R.M.: Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput. Aid. Geom. Design 26, 648–664 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Martin, T., Cohen, E.: Volumetric parameterization of complex objects by respecting multiple materials. Computers and Graphics 34, 187–197 (2010)

    Article  Google Scholar 

  25. Montenegro, R., Cascón, J.M., Escobar, J.M., Rodríguez, E., Montero, G.: An automatic strategy for adaptive tetrahedral mesh generation. Appl. Num. Math. 59, 2203–2217 (2009)

    Article  MATH  Google Scholar 

  26. Montenegro, R., Cascón, J.M., Rodríguez, E., Escobar, J.M., Montero, G.: The meccano method for automatic 3-D triangulation and volume parametrization of complex solids. Computational Science, Engineering and Technology Series 26, 19–48 (2010)

    Article  Google Scholar 

  27. Piegl, L., Tiller, W.: The NURBS book. Springer, New York (1997)

    Book  Google Scholar 

  28. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCSs. ACM Trans. Graph. 22, 477–484 (2003)

    Article  Google Scholar 

  29. Song, W., Yang, X.: Free-form deformation with weighted T-spline. The Visual Computer 21, 139–155 (2005)

    Article  MathSciNet  Google Scholar 

  30. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Trans. Graph. 23, 853–860 (2004)

    Article  Google Scholar 

  31. Wang, H., He, Y., Li, X., Gu, X., Qin, H.: Polycube splines. Comput. Aid. Geom. Design 40, 721–733 (2008)

    Article  MATH  Google Scholar 

  32. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Optimal Analysis-Aware Parameterization of Computational Domain in Isogeometric Analysis. In: Mourrain, B., Schaefer, S., Xu, G. (eds.) GMP 2010. LNCS, vol. 6130, pp. 236–254. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Parametrization of computational domain in isogeometric analysis: Methods and comparison. INRIA-00530758, 1–29 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Escobar, J.M., Cascón, J.M., Rodríguez, E., Montenegro, R. (2011). The Meccano Method for Isogeometric Solid Modeling. In: Quadros, W.R. (eds) Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24734-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24734-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24733-0

  • Online ISBN: 978-3-642-24734-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics