An Interaction Net Implementation of Closed Reduction | SpringerLink
Skip to main content

An Interaction Net Implementation of Closed Reduction

  • Conference paper
Implementation and Application of Functional Languages (IFL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5836))

Included in the following conference series:

Abstract

Closed reduction is a very efficient reduction strategy for the lambda calculus, which is explained using a simple form of explicit substitutions. This paper introduces this strategy, and gives an implementation as a system of interaction nets. We obtain one of the most efficient implementations of this kind to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asperti, A., Giovannetti, C., Naletto, A.: The bologna optimal higher-order machine. Journal of Functional Programming 6(6), 763–810 (1996)

    Article  MATH  Google Scholar 

  2. Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming Languages. Cambridge Tracts in Theoretical Computer Science, vol. 45. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, 2nd edn. Studies in Logic and the Foundations of Mathematics, vol. 103. North-Holland Publishing Company, Amsterdam (1984) (revised edition)

    MATH  Google Scholar 

  4. Fernández, M., Mackie, I.: Closed reductions in the λ-calculus. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 220–234. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Fernández, M., Mackie, I., Sinot, F.-R.: Closed reduction: explicit substitutions without alpha conversion. Mathematical Structures in Computer Science 15(2), 343–381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Girard, J.-Y.: Geometry of interaction 1: Interpretation of System F. In: Ferro, R., Bonotto, C., Valentini, S., Zanardo, A. (eds.) Logic Colloquium 1988. Studies in Logic and the Foundations of Mathematics, vol. 127, pp. 221–260. North Holland Publishing Company, Amsterdam (1989)

    Google Scholar 

  7. Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL 1992), pp. 15–26. ACM Press, New York (1992)

    Google Scholar 

  8. Gonthier, G., Abadi, M., Lévy, J.-J.: Linear logic without boxes. In: Proceedings of the 7th IEEE Symposium on Logic in Computer Science (LICS 1992), pp. 223–234. IEEE Press, Los Alamitos (1992)

    Google Scholar 

  9. Lafont, Y.: Interaction nets. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 95–108. ACM Press, New York (1990)

    Google Scholar 

  10. Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 16–30. ACM Press, New York (1990)

    Google Scholar 

  11. Lévy, J.-J.: Optimal reductions in the lambda calculus. In: Hindley, J.P., Seldin, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 159–191. Academic Press, London (1980)

    Google Scholar 

  12. Lippi, S.: λ-calculus left reduction with interaction nets. Mathematical Structures in Computer Science 12(6) (2002)

    Google Scholar 

  13. Mackie, I.: The Geometry of Implementation. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine (September 1994)

    Google Scholar 

  14. Mackie, I.: YALE: Yet another lambda evaluator based on interaction nets. In: Proceedings of the 3rd International Conference on Functional Programming (ICFP 1998), pp. 117–128. ACM Press, New York (1998)

    Google Scholar 

  15. Mackie, I.: Interaction nets for linear logic. Theoretical Computer Science 247(1), 83–140 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mackie, I.: Efficient λ-evaluation with interaction nets. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 155–169. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Mackie, I., Pinto, J.S.: Encoding linear logic with interaction combinators. Information and Computation 176(2), 153–186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pinto, J.S.: Weak reduction and garbage collection in interaction nets. Electronic Notes in Theoretical Computer Science 84(4), 625–640 (2003)

    Article  MATH  Google Scholar 

  19. Sinot, F.-R.: Call-by-name and call-by-value as token-passing interaction nets. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 386–400. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mackie, I. (2011). An Interaction Net Implementation of Closed Reduction. In: Scholz, SB., Chitil, O. (eds) Implementation and Application of Functional Languages. IFL 2008. Lecture Notes in Computer Science, vol 5836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24452-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24452-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24451-3

  • Online ISBN: 978-3-642-24452-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics