Abstract
Lymph nodes routinely need to be considered in clinical practice in all kinds of oncological examinations. Automatic detection of lymph nodes from chest CT data is however challenging because of low contrast and clutter. Sliding window detectors using traditional features easily get confused by similar structures like muscles and vessels. It recently has been proposed to combine segmentation and detection to improve the detection performance. Features extracted from a segmentation that is initialized with a detection candidate can be used to train a classifier that decides whether the detection is a true or false positive. In this paper, the graph cuts method is adapted to the problem of lymph nodes segmentation. We propose a setting that requires only a single positive seed and at the same time solves the small cut problem of graph cuts. Furthermore, we propose a feature set that is extracted from the candidate segmentation. A classifier is trained on this feature set and used to reject false alarms. Cross validation on 54 CT datasets showed that the proposed system reaches a detection rate of 60.9% with only 6.1 false alarms per volume image, which is better than the current state of the art of mediastinal lymph node detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barbu, A., Suehling, M., Xu, X., Liu, D., Zhou, S.K., Comaniciu, D.: Automatic detection and segmentation of axillary lymph nodes. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 28–36. Springer, Heidelberg (2010)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. IJCV 70, 109–131 (2006), http://dx.doi.org/10.1007/s11263-006-7934-5
Dornheim, L., Dornheim, J.: Automatische detektion von lymphknoten in ct-datensätzen des halses. In: Bildverarbeitung für die Medizin, pp. 308–312 (2008)
Duwe, B.V., Sterman, D.H., Musani, A.I.: Tumors of the mediastinum. Chest 128(4), 2893–2909 (2005)
Feuerstein, M., Deguchi, D., Kitasaka, T., Iwano, S., Imaizumi, K., Hasegawa, Y., Suenaga, Y., Mori, K.: Automatic mediastinal lymph node detection in chest ct. In: SPIE Medical Imaging, Orlando, Florida, USA (February 2009)
Feulner, J., Zhou, S.K., Huber, M., Hornegger, J., Comaniciu, D., Cavallaro, A.: Lymph node detection in 3-d chest ct using a spatial prior probability. In: CVPR (2010)
Funka-lea, G., Boykov, Y., Florin, C., Jolly, M.-p., Moreau-gobard, R., Ramaraj, R., Rinck, D.: Automatic heart isolation for ct coronary visualization using graph-cuts. In: IEEE International Symposium on Biomedical Imaging (2006)
Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. JRSS Series B 51(2), 271–279 (1989)
Kitasaka, T., Tsujimura, Y., Nakamura, Y., Mori, K., Suenaga, Y., Ito, M., Nawano, S.: Automated extraction of lymph nodes from 3-D abdominal CT images using 3-D minimum directional difference filter. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 336–343. Springer, Heidelberg (2007)
de Langen, A.J., Raijmakers, P., Riphagen, I., Paul, M.A., Hoekstra, O.S.: The size of mediastinal lymph nodes and its relation with metastatic involvement: a meta-analysis. Eur. J. Cardiothorac. Surg. 29(1), 26–29 (2006)
Sinop, A., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (2007)
Slabaugh, G., Unal, G.: Graph cuts segmentation using an elliptical shape prior. In: ICIP, vol. 2, pp. II–1222–II–1225 (2005)
Tu, Z.: Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In: ICCV, vol. 2, pp. 1589–1596 (2005)
Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feulner, J., Zhou, S.K., Hammon, M., Hornegger, J., Comaniciu, D. (2011). Segmentation Based Features for Lymph Node Detection from 3-D Chest CT. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-24319-6_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24318-9
Online ISBN: 978-3-642-24319-6
eBook Packages: Computer ScienceComputer Science (R0)