Abstract
Construction of automata for Metric Temporal Logics has been an active but challenging area of research. We consider here the continuous time Metric temporal logic \(\mathsf{MTL}[\:\mathcal{U}_I,\:\mathcal{S}_I]\) as well as corresponding signal automata. In previous works by Maler, Nickovic and Pnueli, the signal automaton synthesis has mainly addressed MTL under an assumption of bounded variability. In this paper, we propose a novel technique of “Temporal Projections” that allows easy synthesis of safety signal automata for continuous time \(\mathsf{MITL}[\:\mathcal{U}_I,\:\mathcal{S}_I]\) over finite signals without assuming bounded variability. Using the same technique, we also give synthesis of safety signal automata for \(\mathsf{MITL}[\:\mathcal{U}_I,\:\mathcal{S}_I]\) with bounded future operators over infinite signals. For finite signals, the Temporal Projections allow us to syntactically transform an MITL formula φ(Q) over a set of propositions Q to a pure past time MITL formula ψ(P,Q) with extended set of propositions (P,Q) which is language equivalent “modulo temporal projection”, i.e. \(L(\phi) = L(\exists P. \boxdot \psi)\). A similar such transformation over infinite signals is also formulated for \(\mathsf{MITL}[\:\mathcal{U}_I,\:\mathcal{S}_I]\) restricted to Bounded Future formlae where the Until operators use only bounded (i.e.non-infinite) intervals. It is straightforward to construct safety-signal-automaton for the transformed formula. We give complexity bounds for the resulting automaton. Our temporal projections are inspired by the use of projections by D’Souza et al for eliminating past in MTL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Henzinger, T.A.: Logics and Models of Real Time: A Survey. In: Proceedings of REX Workshop, pp. 74-106 (1991)
Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal of the ACM 43(1), 116–146 (1996)
D’Souza, D., Raj Mohan, M., Prabhakar, P.: Eliminating past operators in Metric Temporal Logic. In: Perspectives in Concurrency, pp. 86–106. Universities Press (2008)
Henzinger, T.A.: The Temporal Specification and Verification of Real-time Systems. Ph.D Thesis, Stanford Unuiversity (1991)
Koymans, R.: Specifying Real-Time Properties with Metric Temporal Logic. Real Time Systems 2(4), 255–299 (1990)
Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, Present, Future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005)
Maler, O., Nickovic, D., Pnueli, A.: On Synthesizing Controllers from Bounded-Response Properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 95–107. Springer, Heidelberg (2007)
Nickovic, D., Piterman, N.: From MTL to Deterministic Timed Automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167. Springer, Heidelberg (2010)
Ouaknine, J., Worrell, J.: On the Decidability of Metric Temporal Logic. In: Proceedings of LICS 2005, pp. 188–197 (2005)
Ouaknine, J., Worrell, J.: On Metric Temporal Logic and Faulty Turing Machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)
Prabhakar, P., D’Souza, D.: On the Expressiveness of MTL with Past Operators. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kini, D.R., Krishna, S.N., Pandya, P.K. (2011). On Construction of Safety Signal Automata for \(MITL[\:\mathcal{U},\:\mathcal{S}]\) Using Temporal Projections. In: Fahrenberg, U., Tripakis, S. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2011. Lecture Notes in Computer Science, vol 6919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24310-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-24310-3_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24309-7
Online ISBN: 978-3-642-24310-3
eBook Packages: Computer ScienceComputer Science (R0)