Analysis of Nonparametric Estimation Methods for Mutual Information Analysis | SpringerLink
Skip to main content

Analysis of Nonparametric Estimation Methods for Mutual Information Analysis

  • Conference paper
Information Security and Cryptology - ICISC 2010 (ICISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6829))

Included in the following conference series:

  • 1255 Accesses

Abstract

Mutual Information Analysis (MIA) is a side-channel attack introduced recently. It uses mutual information, a known information theory notion, as a side-channel distinguisher. Most previous attacks use parametric statistical tests and the attacker assumes that the distribution family of the targeted side-channel leakage information is known. On the contrary, MIA is a generic attack that assumes the least possible about the underlying hardware specifications. For example, an attacker should not have to guess a linear power model and combine it with a parametric test, like the Pearson correlation factor. Mutual information is considered to be very powerful however it is difficult to estimate. Results of MIA can therefore be unreliable and even bias. Several efficient parametric estimators of mutual information are proposed in the literature. They are obviously very efficient when the distribution is correctly guessed. However, we loose the original goal of MIA which is to assume the least possible about the attacked devices. Hence, nonparametric estimators of mutual information should be considered in more details and, in particular, their efficiency in the side-channel context. We review some of the most powerful nonparametric methods and compare their performance with state-of-the-art side-channel distinguishers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ATMEL: ATmega 2561 Data Sheet, http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf

  2. Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative Evaluation of Rank Correlation Based DPA on an AES Prototype Chip. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential Cluster Analysis. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side Channel Leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 242–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Daub, C., Steuer, R., Selbig, J., Kloska, S.: Estimating Mutual Information Using B-spline Functions - an Improved Similarity Measure for Analysing Gene Expression Data. BMC Bioinformatics 5, 118 (2004)

    Article  Google Scholar 

  7. Flament, F., Guilley, S., Danger, J., Elaabid, M., Maghrebi, H., Sauvage, L.: About Probability Density Function Estimation for Side Channel Analysis. In: COSADE 2010 (2010)

    Google Scholar 

  8. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Goodman, L., Kruskal, W.: Measures of Association for Cross Classifications. II: Further Discussion and References. Journal of the American Statistical Association 49, 732–764 (1954)

    MATH  Google Scholar 

  10. Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The “Backend Duplication” Method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383–397. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kendall, M.: A New Measure of Rank Correlation. Biometrika 30, 1–2 (1938)

    Article  MATH  Google Scholar 

  12. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  13. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Kraskov, A., Stogbauer, H., Grassberger, P.: Estimating Mutual Information. Physical Review E 69, 66138 (2004)

    Article  MathSciNet  Google Scholar 

  15. Kullback, S., Leibler, R.: On Information and Sufficiency. The Annals of Matematical Statistics 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, T.H., Berthier, M.: Mutual Information Analysis under the View of Higher-Order Statistics. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 285–300. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of Power Analysis Attacks on Smartcards. In: USENIX Workshop on Smartcard Technology. pp. 151–162 (1999)

    Google Scholar 

  18. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power Analysis Attacks of Modular Exponentiation in Smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–157. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Moon, Y.I., Rajagopalan, B., Lall, U.: Estimation of Mutual Information using Kernel Density Estimators. Physical Review E 52(3), 2318–2321 (1995)

    Article  Google Scholar 

  20. Moradi, A., Mousavi, N., Paar, C., Salmasizadeh, M.: A Comparative Study of Mutual Information Analysis under a Gaussian Assumption. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 193–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Papana, A., Kugiumtzis, D.: Evaluation of Mutual Information Estimators on Nonlinear Dynamic Systems. Nonlinear Phenomena in Complex Systems 11, 225–232 (2008)

    MATH  Google Scholar 

  22. Pompe, B., Heilfort, M.: On the Concept of the Generalized Mutual Information Function and Efficient Algorithms for Calculing it (1995)

    Google Scholar 

  23. Pompe, B., Physik, F.: Measuring Statistical Dependences in a Time Series. Journal of Statistical Physics 73, 587–610 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Rényi, A.: On Measures of Information and Entropy. In: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561 (1961)

    Google Scholar 

  26. Shannon, C.: A Mathematical Theory of Communication. The Bell System Technical Journal 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  27. Standaert, F.X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univariate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Venelli, A.: Efficient Entropy Estimation for Mutual Information Analysis Using B-Splines. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 17–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Veyrat-Charvillon, N., Standaert, F.: Mutual Information Analysis: How, When and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. VLSI research group and TELECOM ParisTech: The DPA Contest (2008/2009), http://www.dpacontest.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Venelli, A. (2011). Analysis of Nonparametric Estimation Methods for Mutual Information Analysis. In: Rhee, KH., Nyang, D. (eds) Information Security and Cryptology - ICISC 2010. ICISC 2010. Lecture Notes in Computer Science, vol 6829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24209-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24209-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24208-3

  • Online ISBN: 978-3-642-24209-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics