Leaf Segmentation and Tracking Using Probabilistic Parametric Active Contours | SpringerLink
Skip to main content

Leaf Segmentation and Tracking Using Probabilistic Parametric Active Contours

  • Conference paper
Computer Vision/Computer Graphics Collaboration Techniques (MIRAGE 2011)

Abstract

Active contours or snakes are widely used for segmentation and tracking. These techniques require the minimization of an energy function, which is generally a linear combination of a data fit term and a regularization term. This energy function can be adjusted to exploit the intrinsic object and image features. This can be done by changing the weighting parameters of the data fit and regularization term. There is, however, no rule to set these parameters optimally for a given application. This results in trial and error parameter estimation. In this paper, we propose a new active contour framework defined using probability theory. With this new technique there is no need for ad hoc parameter setting, since it uses probability distributions, which can be learned from a given training dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Isard, M., Blake, A.: Active contours. Springer, Heidelberg (1998)

    Google Scholar 

  2. Liu, Y.: Automatic 3d form shape matching using the graduated assignement algorithm. Pattern Recognition 38, 1615–1631 (2005)

    Article  Google Scholar 

  3. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal of Computer Vision, 321–331 (1988)

    Google Scholar 

  4. Tsechpenakis, G., Rapantzikos, K., Tsapatsoulis, N., Kollias, S.: A snake model for object tracking in natural sequences. Signal Processing-Image Communication 19(3), 219–238 (2004)

    Article  Google Scholar 

  5. Charmi, M.A., Derrode, S., Ghorbel, F.: Fourier-based geometric shape prior for snakes. Pattern Recognition Letters 29(7), 897–904 (2008)

    Article  Google Scholar 

  6. Chan, T., Vese, L.: An active contour model without edges. Scale-Space Theories in Computer Vision 1682, 141–151 (1999)

    Article  Google Scholar 

  7. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. Ieee Transactions on Image Processing 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  8. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. Siam Journal on Applied Mathematics 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  10. Charmi, M.A., Derrode, S., Ghorbel, S.: Fourier-based geometric shape prior for snakes. Pattern Recognition Letters 29, 897–904 (2008)

    Article  Google Scholar 

  11. Staib, L., Duncan, J.: Boundary finding with parametrcally deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 1061–1075 (1992)

    Article  Google Scholar 

  12. Xu, C., Prince, J.: Snakes, shapes and gradient vector flow. IEEE Transactions on Image Processing 7, 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, C., Yezzi, A., Prince, J.: On the Relationship between Parametric and Geometric Active Contours. In: Proc. of 34th Asilomar Conference on Signals, Systems, and Computers, vol. 34, pp. 483–489 (October 2000)

    Google Scholar 

  14. Poon, C.S., Braun, M.: Image segmentation by a deformable contour model incorporating region analysis. Physics in Medicine and Biology 42, 1833–1841 (1997)

    Article  Google Scholar 

  15. Goobic, A., Welser, M., Acton, S., Ley, K.: Biomedical application of target tracking in clutter. In: Proc. 35th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 88–92 (2001)

    Google Scholar 

  16. Tsechpenakis, G., Rapantizikos, K., Tsapatsoulis, N., Kollias, S.: A snake model for object tracking in natural sequences. Signal Processing: Image Communication 19, 219–238 (2004)

    Google Scholar 

  17. Shireen, Khaled, Sumaya: Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art. Recent Patents on Computer Science 1, 32–34 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Vylder, J., Ochoa, D., Philips, W., Chaerle, L., Van Der Straeten, D. (2011). Leaf Segmentation and Tracking Using Probabilistic Parametric Active Contours. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics Collaboration Techniques. MIRAGE 2011. Lecture Notes in Computer Science, vol 6930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24136-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24136-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24135-2

  • Online ISBN: 978-3-642-24136-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics