Nash Extremal Optimization and Large Cournot Games | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 387))

  • 667 Accesses

Abstract

Equilibria detection in large games represents an important challenge in computational game theory. A solution based on generative relations defined on the strategy set and the standard Extremal Optimization algorithm is proposed. The Cournot oligopoly model involving up to 1000 players is used to test the proposed methods. Results are compared with those obtained by a Crowding Differential Evolution algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boettcher, S., Percus, A.G.: Optimization with Extremal Dynamics. Physical Review Letters 86, 5211–5214 (2001), doi:10.1103/PhysRevLett.86.5211

    Article  Google Scholar 

  2. Boettcher, S., Percus, A.G.: Extremal optimization: an evolutionary local-search algorithm. CoRR cs.NE/0209030 (2002)

    Google Scholar 

  3. Daughety, A.F.: Cournot oligopoly: characterization and applications. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  4. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization. In: 3rd International Workshop on Genetic and Evolving Systems, GEFS 2008, pp. 47–52 (2008), doi:10.1109/GEFS.2008.4484566

    Google Scholar 

  5. Lung, R.I., Dumitrescu, D.: Computing nash equilibria by means of evolutionary computation. Int. J. of Computers, Communications & Control III(suppl. issue), 364–368 (2008)

    Google Scholar 

  6. Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash equilibria detection for multi-player games. In: IEEE Congress on Evolutionary Computation, pp. 1–5 (2010)

    Google Scholar 

  7. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In: Amman, H.M., Kendrick, D.A., Rust, J. (eds.) Handbook of Computational Economics, vol. 1, ch. 2, pp. 87–142. Elsevier, Amsterdam (1996)

    Google Scholar 

  8. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  9. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 1382–1389. IEEE Press, Portland (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lung, R.I., Mihoc, T.D., Dumitrescu, D. (2011). Nash Extremal Optimization and Large Cournot Games. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol 387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24094-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24094-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24093-5

  • Online ISBN: 978-3-642-24094-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics