Supporting Display Scalability by Redundant Mapping | SpringerLink
Skip to main content

Supporting Display Scalability by Redundant Mapping

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6938))

Included in the following conference series:

Abstract

Visual analysis sessions are increasingly conducted in multi-display environments. However, presenting a data set simultaneously on heterogenous displays to users is a challenging task. In this paper we propose a two-step mapping strategy to address this problem. The first mapping step applies primary mapping functions to generate the same basic layout for all output devices and adapts the object size based on the display characteristic to guarantee the visibility of all elements. The second mapping step introduces additional visual cues to enhance the effectiveness of the visual encoding for different output devices. To demonstrate the Two-Step-Mapping we apply this concept to scatter plots presenting cluster data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burghardt, C., Reisse, C., Heider, T., Giersich, M., Kirste, T.: Implementing scenarios in a smart learning environment. In: Proceedings of 4th IEEE International Workshop on Pervasive Learning, Hongkong (2008) ref1

    Google Scholar 

  2. Cook, K., Thomas, J.: Illuminating the path: The research and development agenda for visual analytics (2005)

    Google Scholar 

  3. Robertson, P.K.: A methodology for choosing data representations. IEEE Computer Graphics and Applications 11, 56–67 (1991)

    Article  Google Scholar 

  4. Senay, H., Ignatius, E.: A knowledge-based system for visualization design. IEEE Computer Graphics and Applications 14, 36–47 (1994)

    Article  Google Scholar 

  5. Merino, C.S., Sips, M., Keim, D.A., Panse, C., Spence, R.: Task-at-hand interface for change detection in stock market data. In: Proceedings of the Working Conference on Advanced Visual Interfaces (AVI 2006), pp. 420–427. ACM, New York (2006)

    Google Scholar 

  6. Tominski, C., Fuchs, G., Schumann, H.: Task-driven color coding. In: Proceedings of the International Conference Information Visualisation (IV 2008), pp. 373–380. IEEE Computer Society, Washington, DC, USA (2008)

    Google Scholar 

  7. Kerren, A., Ebert, A., Meyer, J. (eds.): Human-Centered Visualization Environments: GI-Dagstuhl Research Seminar. Springer, Heidelberg (2007)

    Google Scholar 

  8. Encarnação, J.L., Kirste, T.: Ambient intelligence: Towards smart appliance ensembles. In: From Integrated Publication and Information Systems to Virtual Information and Knowledge Environments, pp. 261–270 (2005)

    Google Scholar 

  9. Pirchheim, C., Waldner, M., Schmalstieg, D.: Deskotheque: Improved spatial awareness in multi-display environments. In: Proceedings of IEEE Virtual Reality Conference (VR 2009), pp. 123–126. IEEE Computer Society, Los Alamitos (2009)

    Chapter  Google Scholar 

  10. Forlines, C., Lilien, R.: Adapting a single-user, single-display molecular visualization application for use in a multi-user, multi-display environment. In: Proceedings of the Working Conference on Advanced Visual Interfaces (AVI 2008), pp. 367–371. ACM Press, New York (2008)

    Chapter  Google Scholar 

  11. Wigdor, D., Jiang, H., Forlines, C., Borkin, M., Shen, C.: Wespace: The design, development and deployment of a walk-up and share multi-surface collaboration system. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2009), pp. 1237–1246. ACM Press, New York (2009)

    Chapter  Google Scholar 

  12. Tan, D.S., Gergle, D., Scupelli, P., Pausch, R.: Physically large displays improve performance on spatial tasks. ACM Transactions on Computer-Human Interaction 13, 71–99 (2006)

    Article  Google Scholar 

  13. Follin, J.M., Bouju, A., FredericBertrand, B.P.: Management of multi-resolution data in a mobile spatial information visualization system. In: Proceedings of the International Conference on Web Information Systems Engineering Workshops (WISEW 2003), pp. 92–99. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  14. Huang, J., Bue, B., Pattath, A., Ebert, D.S., Thomas, K.M.: Interactive illustrative rendering on mobile devices. IEEE Computer Graphics and Applications 27, 48–56 (2007)

    Article  Google Scholar 

  15. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 10 (2007)

    Article  Google Scholar 

  16. Büring, T., Reiterer, H.: Zuiscat: Querying and visualizing information spaces on personal digital assistants. In: Proceedings of the International Conference on Human Computer Interaction with Mobile Devices & Services (MobileHCI 2005), pp. 129–136. ACM Press, New York (2005)

    Google Scholar 

  17. Bertini, E., Santucci, G.: Improving 2d scatterplots effectiveness through sampling, displacement, and user perception. In: Proceedings of the International Conference Information Visualisation (IV 2005), pp. 826–834. IEEE Computer Society, Washington, DC, USA (2005)

    Google Scholar 

  18. Ellis, G., Dix, A.: Enabling automatic clutter reduction in parallel coordinate plots. IEEE Transactions on Visualization and Computer Graphics (Proceedings of InfoVis 2006) 12, 717–724 (2006)

    Article  Google Scholar 

  19. Ellis, G., Dix, A.: A taxonomy of clutter reduction for information visualisation. IEEE Transactions on Visualization and Computer Graphics (Proceedings of InfoVis 2007) 13, 1216–1223 (2007)

    Article  Google Scholar 

  20. Bertini, E., Santucci, G.: Quality metrics for 2d scatterplot graphics: Automatically reducing visual clutter. In: Butz, A., Krüger, A., Olivier, P. (eds.) SG 2004. LNCS, vol. 3031, pp. 77–89. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: An overview and systematization. In: InfoVis 2011 – IEEE Information Visualization Conference 2011, Providence, USA (2011)

    Google Scholar 

  22. Fuchs, G., Thiede, C., Sips, M., Schumann, H.: Device-based adaptation of visualizations in smart environments. In: Workshop Collaborative Visualization on Interactive Surfaces (CoVIS), IEEE VisWeek 2009 (2009)

    Google Scholar 

  23. Novotny, M., Hauser, H.: Outlier-preserving focus+context visualization in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics (Proceedings of Vis 2006) 12, 893–900 (2006)

    Article  Google Scholar 

  24. Thiede, C., Schumann, H., Rosenbaum, R.: On-the-fly device adaptation using progressive contents. In: Tavangarian, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds.) IMC 2009. Communications in Computer and Information Science, vol. 53, pp. 49–60. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  26. König, A.: Die abhängigkeit der sehschärfe von der beleuchtungsintensität. Sitzungsbericht der Königlich Preussischen Akademie der Wissenschaften zu Berlin 26, 559–575 (1897)

    Google Scholar 

  27. Kaufmann, H.: Strabismus. Georg Thieme Verlag (2003)

    Google Scholar 

  28. Terrenghi, L., Quigley, A., Dix, A.: A taxonomy for and analysis of multi-person-display ecosystems. Personal and Ubiquitous Computing 13, 583–598 (2009)

    Article  Google Scholar 

  29. Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Transactions on Graphics 5, 110–141 (1986)

    Article  Google Scholar 

  30. Healey, C.G.: Choosing effective colours for data visualization. In: Proceedings of IEEE Visualization (Vis 1996), pp. 263–270 (1996)

    Google Scholar 

  31. Bertin, J.: Graphics and Graphic Information-Processing. de Gruyter, Berlag (1981)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Radloff, A., Luboschik, M., Sips, M., Schumann, H. (2011). Supporting Display Scalability by Redundant Mapping. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24028-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24028-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24027-0

  • Online ISBN: 978-3-642-24028-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics