Multi-feature Tracking Approach Using Dynamic Fuzzy Sets | SpringerLink
Skip to main content

Multi-feature Tracking Approach Using Dynamic Fuzzy Sets

  • Conference paper
Eurofuse 2011

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 107))

  • 633 Accesses

Abstract

In this paper a new tracking approach based in fuzzy concepts is introduced. The aim of this methodology is to incorporate in the proposed model the uncertainty underlying any problem of feature tracking, through the use of fuzzy sets. Several dynamic fuzzy sets are constructed according both cinematic (movement model) and non cinematic properties (image gray levels) that distinguish the feature. Meanwhile cinematic related fuzzy sets model the feature movement characteristics, the non cinematic fuzzy sets model the feature visible image related properties. The tracking task is performed through the fusion of these fuzzy models by means of a fuzzy inference engine. This way feature detection and matching steps are performed exclusively using inference rules on fuzzy sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Couto, P., Pagola, M., Bustince, H., Barrenechea, E., Melo-Pinto, P.: Uncertainty in multilevel image thresholding using Atanassov’s intuitionistic fuzzy sets. In: Proc. (IEEE World Congress on Computational Intelligence). IEEE International Conference on Fuzzy Systems FUZZ-IEEE 2008, pp. 330–335 (2008); doi:10.1109/FUZZY.2008.4630386

    Google Scholar 

  2. Couto, P., Lopes, N.V., Bustince, H., Melo-Pinto, P.: Fuzzy dynamic model for feature tracking. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), Barcelona, Spain, July 18-23, pp. 1–8 (2010); doi:10.1109/FUZZY.2010.5583979

    Google Scholar 

  3. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 34(3), 334–352 (2004); doi:10.1109/TSMCC.2004.829274

    Article  Google Scholar 

  4. Huang, L.K., Wang, M.J.J.: Image thresholding by minimizing the measures of fuzziness. Pattern Recognition 28(1), 41–51 (1995); doi:10.1016/0031-3203(94)E0043-K

    Article  Google Scholar 

  5. Jaimes, A., Sebe, N.: Multimodal human-computer interaction: A survey. Computer Vision and Image Understanding 108(1-2), 116 (2007) doi:10.1016/j.cviu.2006.10.019; special Issue on Vision for Human-Computer Interaction;

    Article  Google Scholar 

  6. Lazoff, H.: Target tracking using fuzzy logic association. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 4, pp. 2457–2460 (1998); doi:10.1109/ICASSP.1998.681648

    Google Scholar 

  7. Liu, M., Wu, C., Zhang, Y.: A review of Traffic Visual Tracking technology. In: Proc. International Conference on Audio, Language and Image Processing ICALIP 2008, pp. 1016–1020 (2008); doi:10.1109/ICALIP.2008.4590198

    Google Scholar 

  8. Lopes, N.V., Bustince, H., Filipe, V., Melo-Pinto, P.: Fuzziness Measure Approach to Automatic Histogram Threshold. In: Tavares, J., Jorge, N. (eds.) Computational Vision and Medical Image Processing: VipIMAGE 2007, pp. 295–299. Taylor and Francis Group, Abington (2007)

    Google Scholar 

  9. Lopes, N.V., Couto, P., Bustince, H., Melo-Pinto, P.: Fuzzy Dynamic Matching Approach for Multi-Feature Tracking. In: EUROFUSE 2009, Pamplona, Spain, pp. 245–250 (2009)

    Google Scholar 

  10. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006); doi:10.1016/j.cviu.2006.08.002

    Article  Google Scholar 

  11. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), 13 (2006); doi:10.1145/1177352.1177355

    Article  Google Scholar 

  12. Zadeh, L.A.: Fuzzy Sets. Information Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopes, N.V., Couto, P., Melo-Pinto, P. (2011). Multi-feature Tracking Approach Using Dynamic Fuzzy Sets. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds) Eurofuse 2011. Advances in Intelligent and Soft Computing, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24001-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24001-0_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24000-3

  • Online ISBN: 978-3-642-24001-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics