Abstract
In this paper a new tracking approach based in fuzzy concepts is introduced. The aim of this methodology is to incorporate in the proposed model the uncertainty underlying any problem of feature tracking, through the use of fuzzy sets. Several dynamic fuzzy sets are constructed according both cinematic (movement model) and non cinematic properties (image gray levels) that distinguish the feature. Meanwhile cinematic related fuzzy sets model the feature movement characteristics, the non cinematic fuzzy sets model the feature visible image related properties. The tracking task is performed through the fusion of these fuzzy models by means of a fuzzy inference engine. This way feature detection and matching steps are performed exclusively using inference rules on fuzzy sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Couto, P., Pagola, M., Bustince, H., Barrenechea, E., Melo-Pinto, P.: Uncertainty in multilevel image thresholding using Atanassov’s intuitionistic fuzzy sets. In: Proc. (IEEE World Congress on Computational Intelligence). IEEE International Conference on Fuzzy Systems FUZZ-IEEE 2008, pp. 330–335 (2008); doi:10.1109/FUZZY.2008.4630386
Couto, P., Lopes, N.V., Bustince, H., Melo-Pinto, P.: Fuzzy dynamic model for feature tracking. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), Barcelona, Spain, July 18-23, pp. 1–8 (2010); doi:10.1109/FUZZY.2010.5583979
Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 34(3), 334–352 (2004); doi:10.1109/TSMCC.2004.829274
Huang, L.K., Wang, M.J.J.: Image thresholding by minimizing the measures of fuzziness. Pattern Recognition 28(1), 41–51 (1995); doi:10.1016/0031-3203(94)E0043-K
Jaimes, A., Sebe, N.: Multimodal human-computer interaction: A survey. Computer Vision and Image Understanding 108(1-2), 116 (2007) doi:10.1016/j.cviu.2006.10.019; special Issue on Vision for Human-Computer Interaction;
Lazoff, H.: Target tracking using fuzzy logic association. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 4, pp. 2457–2460 (1998); doi:10.1109/ICASSP.1998.681648
Liu, M., Wu, C., Zhang, Y.: A review of Traffic Visual Tracking technology. In: Proc. International Conference on Audio, Language and Image Processing ICALIP 2008, pp. 1016–1020 (2008); doi:10.1109/ICALIP.2008.4590198
Lopes, N.V., Bustince, H., Filipe, V., Melo-Pinto, P.: Fuzziness Measure Approach to Automatic Histogram Threshold. In: Tavares, J., Jorge, N. (eds.) Computational Vision and Medical Image Processing: VipIMAGE 2007, pp. 295–299. Taylor and Francis Group, Abington (2007)
Lopes, N.V., Couto, P., Bustince, H., Melo-Pinto, P.: Fuzzy Dynamic Matching Approach for Multi-Feature Tracking. In: EUROFUSE 2009, Pamplona, Spain, pp. 245–250 (2009)
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006); doi:10.1016/j.cviu.2006.08.002
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), 13 (2006); doi:10.1145/1177352.1177355
Zadeh, L.A.: Fuzzy Sets. Information Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lopes, N.V., Couto, P., Melo-Pinto, P. (2011). Multi-feature Tracking Approach Using Dynamic Fuzzy Sets. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds) Eurofuse 2011. Advances in Intelligent and Soft Computing, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24001-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-24001-0_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24000-3
Online ISBN: 978-3-642-24001-0
eBook Packages: EngineeringEngineering (R0)