Discrete Kernel Aggregation Functions | SpringerLink
Skip to main content

Discrete Kernel Aggregation Functions

  • Conference paper
Eurofuse 2011

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 107))

  • 629 Accesses

Abstract

The study of discrete aggregation functions (those defined on a finite chain) with some kind of smoothness has been extensively developed in last years. Smooth t-norms and t-conorms, nullnorms and some kinds of uninorms, copulas and quasi-copulas have been characterized in this context. In this paper discrete aggregation functions with the kernel property (which implies the smoothness property) are investigated. Some properties and characterizations, as well as some construction methods for this kind of discrete aggregation functions are studied. It is also investigated when the marginal functions of a discrete kernel aggregation function fully determine it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguiló, I., Suñer, J., Torrens, J.: Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems 159, 1658–1672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practicioners. Springer, Heidelberg (2007)

    Google Scholar 

  3. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation operators. New trends and applications, Studies in Fuzziness and Soft Computing, vol. 97. Physica-Verlag, Heidelberg (2002)

    Google Scholar 

  4. Calvo, T., Mesiar, R.: Stability of aggregation operators. In: Proceedings of EUSFLAT 2001, Leicester, pp. 475–478 (2001)

    Google Scholar 

  5. De Baets, B., Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17, 1–14 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fodor, J.C.: Smooth associative operations on finite ordinal scales. IEEE Trans. on Fuzzy Systems 8, 791–795 (2000)

    Article  Google Scholar 

  7. Fung, L., Fu, K.: An axiomatic approach to rational decision-making in fuzzy environment. In: Tanaka, K., Zadeh, L., Fu, K., Shimura, M. (eds.) Fuzzy Sets and Their Applications to Cognitive and Decision Processes, pp. 227–256. Academic Press, New York (1975)

    Google Scholar 

  8. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions. In: The series: Encyclopedia of Mathematics and its Applications, vol. 127, Cambridge University Press, Cambridge (2009)

    Google Scholar 

  9. Kalicka, J.: On some construction methods for 1-Lipschitz aggregation functions. Fuzzy Sets and Systems 160, 726–732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klement, E.P., Kolesárová, A.: Extension to copulas and quasi-copulas as especial 1-Lipschitz aggregation operators. Kybernetika 41, 329–348 (2005)

    MathSciNet  Google Scholar 

  11. Kolesárová, A.: 1-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39, 615–629 (2003)

    MathSciNet  Google Scholar 

  12. Kolesárová, A., Mayor, G., Mesiar, R.: Weighted ordinal means. Information Sciences 177, 3822–3830 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolesárová, A., Mordelová, J.: 1-Lipschitz and kernel aggregation operators. In: Proceedings of AGOP 2001, Oviedo, Spain, pp. 77–80 (2001)

    Google Scholar 

  14. Kolesárová, A., Mordelová, J., Muel, E.: Kernel aggregation operators and their marginals. Fuzzy sets and Systems 142, 35–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kolesárová, A., Muel, E., Mordelová, J.: Construction of kernel aggregation operators from marginal values. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 37–49 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mas, M., Mayor, G., Torrens, J.: t −Operators and uninorms on a finite totally ordered set. International Journal of Intelligent Systems 14, 909–922 (1999)

    Article  MATH  Google Scholar 

  17. Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms on a finite chain. Fuzzy Sets and Systems 146, 3–17 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mas, M., Monserrat, M., Torrens, J.: Smooth aggregation functions on finite scales. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 398–407. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Mayor, G., Suñer, J., Torrens, J.: Copula-like operations on finite settings. IEEE Transactions on Fuzzy Systems 13, 468–477 (2005)

    Article  Google Scholar 

  20. Mayor, G., Torrens, J.: Triangular norms in discrete settings. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 189–230. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  21. Torra, V., Narukawa, Y.: Modeling decisions. Information fusion and aggregation operators. In: The series: Cognitive Technologies. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mas, M., Monserrat, M., Torrens, J. (2011). Discrete Kernel Aggregation Functions. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds) Eurofuse 2011. Advances in Intelligent and Soft Computing, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24001-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24001-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24000-3

  • Online ISBN: 978-3-642-24001-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics