Fuzzy Classifiers – Opportunities and Challenges – | SpringerLink
Skip to main content

Fuzzy Classifiers – Opportunities and Challenges –

  • Conference paper
Scalable Uncertainty Management (SUM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6929))

Included in the following conference series:

  • 634 Accesses

Abstract

Several issues arise when we consider building classifiers in general, and fuzzy classifiers in particular. These issues include but are not limited to attribute/feature selection, adoption of a specific approach/algorithm, evaluate the classifier performance, etc. We consider the opportunities that such classifiers have to offer and contrast them with the challenges they pose.

The authors dedicate this paper to Professor Lotfi A. Zadeh on the occasion of his 90th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liang, L.R., Looney, C.G.: Competitive fuzzy edge detection. Applied soft computing 3(2), 123–137 (2003)

    Article  Google Scholar 

  2. Gomez, J., Dasgupta, D.: Evolving fuzzy classifiers for intrusion detection. In: Proceedings of the 2002 IEEE Workshop on Information Assurance, vol. 6.3, pp. 321–323. IEEE Computer Press, New York (2002)

    Google Scholar 

  3. Chan, P., Stolfo, S.: Toward scalable learning with non-uniform class and cost dostributions: A case study in credit card fraud detection. In: Proceedings of Knowledge Discovery and Data Mining, pp. 164–168 (1998)

    Google Scholar 

  4. http://www.springer.com/statistics/statistical+theory+and+methods/journal/357

  5. Vapnik, V.N.: Statistical learning theory. Wiley-Interscience, Hoboken (1998)

    MATH  Google Scholar 

  6. Zadeh, L.A.: Fuzzy sets. Information Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zadeh, L.A.: A New Approach to the Analysis of Complex Systems. IEEE Transactions SMC SMC-3, 1 (1973)

    MathSciNet  Google Scholar 

  8. Cristianini, N., Shawe-Taylor, J.: An introduction to support Vector Machines: and other kernel-based learning methods. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  9. Mitchell, T.M.: The discipline of machine learning. Carnegie Mellon University, School of Computer Science, Machine Learning Dept. (2006)

    Google Scholar 

  10. Ishibuchi, H., Nakashima, T., Murata, T.: A fuzzy classifier system that generates fuzzy if-then rules for pattern classification problems. In: IEEE International Conference on Evolutionary Computation, vol. 2, pp. 759–764. IEEE, Los Alamitos (1995)

    Google Scholar 

  11. Kuncheva, L.I.: How good are fuzzy if-then classifiers? IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 30(4), 501–509 (2000)

    Article  Google Scholar 

  12. Kuncheva, L.I.: Fuzzy classifier design, vol. 49. Physica, Heidelberg (2000)

    MATH  Google Scholar 

  13. Visa, S., Ralescu, A.: Learning Imbalanced and Overlapping Classes using Fuzzy Sets. In: Proceedings of the International Conference of Machine Learning, Workshop on Learning from Imbalanced data Sets (II): Learning with Imbalanced Data Sets II, Washington, pp. 97–104 (2003)

    Google Scholar 

  14. Visa, S., Ralescu, A.: Fuzzy classifiers for imbalanced, complex classes of varying size. In: Proc. of the IPMU Conference, Perugia, pp. 393–400 (2004)

    Google Scholar 

  15. Uebele, V., Abe, S., Lan, M.S.: A neural-network-based fuzzy classifier. IEEE Transactions on Systems, Man and Cybernetics 25(2) (1995)

    Google Scholar 

  16. Abe, S.: Pattern classification; neuro-fuzzy methods and their comparison(book). Springer Verlag London, Ltd., London (2001)

    MATH  Google Scholar 

  17. Huellermeier, E.: Fuzzy-Methods in Machine Learning and Data Mining: Status and Prospects. Fuzzy Sets and Systems 156(3), 387–407 (2005)

    Article  MathSciNet  Google Scholar 

  18. Sugeno, M., Yasukawa, T.: A Fuzzy-Logic-Based Approach to Qualitative Modeling. IEEE Transactions on fuzzy systems 1(1), 7–31 (1993)

    Article  Google Scholar 

  19. Visa, S.: Fuzzy Classifiers for Imbalanced Data Sets. PhD Thesis, Computer Science Department, University of Cincinnati, Cincinnati, Ohio, USA (2007)

    Google Scholar 

  20. Ralescu, D.: Cardinality, quantifiers, and the aggregation of fuzzy criteria. Fuzzy Sets and Systems 69, 355–365 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Negoita, C.V., Ralescu, D.: Representation theorems for fuzzy concepts. Kybernetes 4, 169–174 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ralescu, A., Visa, S. (2011). Fuzzy Classifiers – Opportunities and Challenges –. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23963-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23962-5

  • Online ISBN: 978-3-642-23963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics