Patterns Discovery for Efficient Structured Probabilistic Inference | SpringerLink
Skip to main content

Patterns Discovery for Efficient Structured Probabilistic Inference

  • Conference paper
Scalable Uncertainty Management (SUM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6929))

Included in the following conference series:

  • 630 Accesses

Abstract

In many domains where experts are the main source of knowledge, e.g., in reliability and risk management, a framework well suited for modeling, maintenance and exploitation of complex probabilistic systems is essential. In these domains, models usually define closed-world systems and result from the aggregation of multiple patterns repeated many times. Object Oriented-based Frameworks (OOF) such as Probabilistic Relational Models thus offer an effective way to represent such systems. OOFs define patterns as classes and substitute large Bayesian networks (BN) by graphs of instances of these classes. In this framework, Structured Inference avoids many computation redundancies by exploiting class knowledge, hence reducing BN inference times by orders of magnitude. However, to keep modeling and maintenance costs low, OOF classes often encode only generic situations. More complex situations, even those repeated many times, are only represented by combinations of instances. In this paper, we propose to determine such combination patterns and exploit them as classes to speed-up Structured Inference. We prove that determining an optimal set of patterns is NP-hard. We also provide an efficient algorithm to approximate this set and show numerical experiments that highlight its practical efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bangsø, O.: Object Oriented Bayesian Networks. Ph.D. thesis. Aalborg University (March 2004)

    Google Scholar 

  2. Bangsø, O., Sønderberg-Madsen, N., Jensen, F.: A bn framework for the construction of virtual agents with human-like behaviour. In: Proc. of PGM 2006 (2006)

    Google Scholar 

  3. Bangsø, O., Wuillemin, P.H.: Top-down construction and repetitive structures representation in Bayesian networks. In: Proc. of FLAIRS 2000, pp. 282–286 (2000)

    Google Scholar 

  4. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113, 41–85 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proc. of IJCAI 1999 (1999)

    Google Scholar 

  6. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  7. Getoor, L., Friedman, N., Koller, D., Pfeffer, A., Taskar, B.: Probabilistic relational models. In: Getoor, L., Taskar, B. (eds.) An Introduction to Statistical Relational Learning. ch. 5. MIT Press, Cambridge (2007)

    Google Scholar 

  8. Getoor, L., Koller, D., Taskar, B., Friedman, N.: Learning probabilistic relational models with structural uncertainty. In: ICML 2000 Workshop on Attribute-Value and Relational Learning: Crossing the Boundaries (2000)

    Google Scholar 

  9. Halldórsson, M.: Approximations of weighted independent set and hereditary subset problems. Journal of Graph Algorithms and Applications (2000)

    Google Scholar 

  10. Heckerman, D., Meek, C., Koller, D.: Probabilistic models for relational data. Tech. rep., WA: Microsoft Corporation, Redmond (2004)

    Google Scholar 

  11. Ide, J.S., Cozman, F.G., Ramos, F.T.: Generating random Bayesian networks with constraints on induced width. In: Proc. of ECAI 2004, pp. 323–327 (2004)

    Google Scholar 

  12. Inokuchi, A., Washio, T., Motoda, H.: A general framework for mining frequent subgraphs from labeled graphs. Fundamenta Informaticae (2005)

    Google Scholar 

  13. Jaeger, M.: Relational Bayesian networks. In: Proc. of UAI 1997 (1997)

    Google Scholar 

  14. Kersting, K., Raedt, L.D.: Bayesian logic programs. Technical report no. 151, Institute for Computer Science, University of Freiburg, Germany (April 2001)

    Google Scholar 

  15. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proc. of AAAI 1997, pp. 302–313 (1997)

    Google Scholar 

  16. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. of ICDM 2001 (2001)

    Google Scholar 

  17. Madsen, A., Jensen, F.: LAZY propagation: A junction tree inference algorithm based on lazy inference. Artificial Intelligence 113(1–2), 203–245 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mahoney, S., Laskey, K.: Network engineering for complex belief networks. In: Proc. of UAI 1996 (1996)

    Google Scholar 

  19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  20. Pfeffer, A., Koller, D., Milch, B., Takusagawa, K.: SPOOK: A system for probabilistic object-oriented knowledge representation. In: Proc. of UAI 1999 (1999)

    Google Scholar 

  21. Pfeffer, A.: Probabilistic Reasoning for Complex Systems. Ph.D. thesis. Stanford University (2000)

    Google Scholar 

  22. Rose, D., Lueker, G., Tarjan, R.: Algorithmic aspects of vertex elimination on graphs. SIAM J. on Computing 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rose, D.: Triangulated graphs and the elimination process. J. Math. Analysis and Applications (1970)

    Google Scholar 

  24. Torti, L., Wuillemin, P.H.: Structured value elimination with d-separation analysis. In: Proc. of FLAIRS 2010, pp. 122–127 (2010)

    Google Scholar 

  25. Torti, L., Wuillemin, P.H., Gonzales, C.: Reinforcing the object-oriented aspect of probabilistic relational models. In: Proc. of PGM 2010 (2010)

    Google Scholar 

  26. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proc. of ICDM 2002 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torti, L., Gonzales, C., Wuillemin, PH. (2011). Patterns Discovery for Efficient Structured Probabilistic Inference. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23963-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23962-5

  • Online ISBN: 978-3-642-23963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics