Abstract
This paper studies how to encode the problem of computing the extensions of an argumentation framework (under a given semantics) as a constraint satisfaction problem (CSP). Such encoding is of great importance since it makes it possible to use the very efficient solvers (developed by the CSP community) for computing the extensions. We focus on three families of frameworks: Dung’s abstract framework, its constrained version and preference-based argumentation frameworks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)
Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence 34, 197–216 (2002)
Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)
Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: NMR, pp. 59–64 (2004)
Bistarelli, S., Santini, F.: A common computational framework for semiring-based argumentation systems. In: ECAI, pp. 131–136 (2010)
Caminada, M.: Semi-stable semantics. In: Proceedings of the 1st International Conference on Computational Models of Argument (COMMA 2006), pp. 121–130 (2006)
Castell, T., Fargier, H.: Propositional satisfaction problems and clausal csps. In: ECAI, pp. 214–218 (1998)
Cayrol, C., Doutre, S., Mengin, J.: On decision problems related to the preferred semantics for argumentation frameworks. Journal of Logic and Computation 13(3), 377–403 (2003)
Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frameworks. In: KR, pp. 112–122 (2006)
Creignou, N.: The class of problems that are linearly equivalent to satisfiability or a uniform method for proving np-completeness. Theor. Comput. Sci. 145(1&2), 111–145 (1995)
Devred, C., Doutre, S., Lefèvre, C., Nicolas, P.: Dialectical proofs for constrained argumentation. In: COMMA, pp. 159–170 (2010)
Dimopoulos, Y., Nebel, B., Toni, F.: Preferred arguments are harder to compute than stable extensions. In: IJCAI 1999, pp. 36–43 (1999)
Dimopoulos, Y., Nebel, B., Toni, F.: Finding admissible and preferred arguments can be very hard. In: KR 2000, pp. 53–61 (2000)
Dung, P.M., Mancarella, P., Toni, F.: Computing ideal skeptical argumentation. Artificial Intelligence Journal 171, 642–674 (2007)
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence Journal 77, 321–357 (1995)
Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Inconsistency tolerance in weighted argument systems. In: AAMAS, pp. 851–858 (2009)
Dunne, P., Wooldridge, M.: Complexity of abstract argumentation. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence. ch.4, pp. 85–104 (2009)
Egly, U., Gaggl, S., Woltran, S.: Answer-set programming encodings for argumentation frameworks. In: Technical report DBAI-TR-2008-62, Technische Universitat Wien (2008)
Kumar, V.: Depth-first search. Encyclopaedia of Artificial Intelligence 2, 1004–1005 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Amgoud, L., Devred, C. (2011). Argumentation Frameworks as Constraint Satisfaction Problems. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-23963-2_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23962-5
Online ISBN: 978-3-642-23963-2
eBook Packages: Computer ScienceComputer Science (R0)