Argumentation Frameworks as Constraint Satisfaction Problems | SpringerLink
Skip to main content

Argumentation Frameworks as Constraint Satisfaction Problems

  • Conference paper
Scalable Uncertainty Management (SUM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6929))

Included in the following conference series:

Abstract

This paper studies how to encode the problem of computing the extensions of an argumentation framework (under a given semantics) as a constraint satisfaction problem (CSP). Such encoding is of great importance since it makes it possible to use the very efficient solvers (developed by the CSP community) for computing the extensions. We focus on three families of frameworks: Dung’s abstract framework, its constrained version and preference-based argumentation frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)

    Google Scholar 

  2. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence 34, 197–216 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: NMR, pp. 59–64 (2004)

    Google Scholar 

  5. Bistarelli, S., Santini, F.: A common computational framework for semiring-based argumentation systems. In: ECAI, pp. 131–136 (2010)

    Google Scholar 

  6. Caminada, M.: Semi-stable semantics. In: Proceedings of the 1st International Conference on Computational Models of Argument (COMMA 2006), pp. 121–130 (2006)

    Google Scholar 

  7. Castell, T., Fargier, H.: Propositional satisfaction problems and clausal csps. In: ECAI, pp. 214–218 (1998)

    Google Scholar 

  8. Cayrol, C., Doutre, S., Mengin, J.: On decision problems related to the preferred semantics for argumentation frameworks. Journal of Logic and Computation 13(3), 377–403 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frameworks. In: KR, pp. 112–122 (2006)

    Google Scholar 

  10. Creignou, N.: The class of problems that are linearly equivalent to satisfiability or a uniform method for proving np-completeness. Theor. Comput. Sci. 145(1&2), 111–145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Devred, C., Doutre, S., Lefèvre, C., Nicolas, P.: Dialectical proofs for constrained argumentation. In: COMMA, pp. 159–170 (2010)

    Google Scholar 

  12. Dimopoulos, Y., Nebel, B., Toni, F.: Preferred arguments are harder to compute than stable extensions. In: IJCAI 1999, pp. 36–43 (1999)

    Google Scholar 

  13. Dimopoulos, Y., Nebel, B., Toni, F.: Finding admissible and preferred arguments can be very hard. In: KR 2000, pp. 53–61 (2000)

    Google Scholar 

  14. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal skeptical argumentation. Artificial Intelligence Journal 171, 642–674 (2007)

    Article  MATH  Google Scholar 

  15. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence Journal 77, 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Inconsistency tolerance in weighted argument systems. In: AAMAS, pp. 851–858 (2009)

    Google Scholar 

  17. Dunne, P., Wooldridge, M.: Complexity of abstract argumentation. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence. ch.4, pp. 85–104 (2009)

    Google Scholar 

  18. Egly, U., Gaggl, S., Woltran, S.: Answer-set programming encodings for argumentation frameworks. In: Technical report DBAI-TR-2008-62, Technische Universitat Wien (2008)

    Google Scholar 

  19. Kumar, V.: Depth-first search. Encyclopaedia of Artificial Intelligence 2, 1004–1005 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amgoud, L., Devred, C. (2011). Argumentation Frameworks as Constraint Satisfaction Problems. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23963-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23962-5

  • Online ISBN: 978-3-642-23963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics