Fast Automatic Multi-atlas Segmentation of the Prostate from 3D MR Images | SpringerLink
Skip to main content

Fast Automatic Multi-atlas Segmentation of the Prostate from 3D MR Images

  • Conference paper
Prostate Cancer Imaging. Image Analysis and Image-Guided Interventions (Prostate Cancer Imaging 2011)

Abstract

A fast fully automatic method of segmenting the prostate from 3D MR scans is presented, incorporating dynamic multi-atlas label fusion. The diffeomorphic demons method is used for non-rigid registration and a comparison of alternate metrics for atlas selection is presented. A comparison of results from an average shape atlas and the multi-atlas approach is provided. Using the same clinical dataset and manual contours from 50 clinical scans as Klein et al. (2008) a median Dice similarity coefficient of 0.86 was achieved with an average surface error of 2.00mm using the multi-atlas segmentation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Karlsson, M., Karlsson, M.G., Nyholm, T., Amies, C., Zackrisson, B.: Dedicated magnetic resonance imaging in the radiotherapy clinic. Int. J. Radiat. Oncol. Biol. Phys. 74, 644–651 (2009)

    Article  Google Scholar 

  2. Raaymakers, B.W., Lagendijk, J.J.W., Overweg, J., Kok, J.G.M., Raaijmakers, A.J.E., Kerkhof, E.M., van der Put, R.W., Meijsing, I., Crijns, S.P.M., Benedosso, F., van Vulpen, M., de Graaff, C.H.W., Allen, J., Brown, K.J.: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys. Med. Biol. 54, N229–N237, (2009)

    Article  Google Scholar 

  3. Prabhakar, R., Julka, P.K., Ganesh, T., Munshi, A., Joshi, R.C., Rath, G.K.: Feasibility of using MRI alone for 3D Radiation Treatment Planning in Brain Tumors. Japanese Journal of Clinical Oncology 37, 405–411 (2007)

    Article  Google Scholar 

  4. Roach, M., Faillace-Akazawa, P., Malfatti, C., Holland, J., Hricak, H.: Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 35, 1011–1018 (1996)

    Article  Google Scholar 

  5. Rasch, C., Barillot, I., Remeijer, P., Touw, A., Herk, M., van Lebesque, J.V.: Definition of the prostate in CT and MRI: a multi-observer study. International Journal of Radiation Oncology Biology Physics 43, 57–66 (1999)

    Article  Google Scholar 

  6. Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21, 1428–1442 (2004)

    Article  Google Scholar 

  7. Martin, S., Troccaz, J., Daanenc, V.: Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med. Phys. 37, 1579–1590 (2010)

    Article  Google Scholar 

  8. Klein, S., Heide, U.A., van der Lips, I.M., Vulpen, M., van Staring, M., Pluim, J.P.W.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics 35, 1407–1417 (2008)

    Article  Google Scholar 

  9. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)

    Article  Google Scholar 

  10. Dowling, J., Lambert, J., Parker, J., Greer, P.B., Fripp, J., Denham, J., Ourselin, S., Salvado, O.: Automatic MRI atlas-based external beam radiation therapy treatment planning for prostate cancer. In: Madabhushi, A., et al. (eds.) MICCAI 2010. LNCS, vol. 6369, pp. 25–33. Springer, Heidelberg (2010)

    Google Scholar 

  11. Greer, P.B., Dowling, J.A., Lambert, J.A., Fripp, J., Parker, J., Denham, J.W., Wratten, C., Capp, A., Salvado, O.: A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer. The Medical Journal of Australia 194, S24–S27 (2011)

    Google Scholar 

  12. Lambert, J., Greer, P.B., Menk, F., Patterson, J., Parker, J., Capp, A., Wratten, C., Dowling, J., Salvado, O., Hughes, C., Fisher, K., Ostwald, P., Denham, J.W.: MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning. Radiotherapy and Oncology 98, 330–334 (2011)

    Article  Google Scholar 

  13. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging 23, 903–921 (2004)

    Article  Google Scholar 

  14. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging 29, 1310–1320 (2010)

    Article  Google Scholar 

  15. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric Diffeomorphic Image Registration with the Demons Algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Dice, L.R.: Measures of the Amount of Ecologic Association Between Species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dowling, J.A. et al. (2011). Fast Automatic Multi-atlas Segmentation of the Prostate from 3D MR Images. In: Madabhushi, A., Dowling, J., Huisman, H., Barratt, D. (eds) Prostate Cancer Imaging. Image Analysis and Image-Guided Interventions. Prostate Cancer Imaging 2011. Lecture Notes in Computer Science, vol 6963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23944-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23944-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23943-4

  • Online ISBN: 978-3-642-23944-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics