On Guaranteeing Polynomially Bounded Search Tree Size | SpringerLink
Skip to main content

On Guaranteeing Polynomially Bounded Search Tree Size

  • Conference paper
Principles and Practice of Constraint Programming – CP 2011 (CP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

Much work has been done on describing tractable classes of constraint networks. Most of the known tractable examples are described by either restricting the structure of the networks, or their language. Indeed, for both structural or language restrictions very strong dichotomy results have been proven and in both cases it is likely that all practical examples have already been discovered.

As such it is timely to consider tractability which cannot be described by language or structural restrictions. This is the focus of the work here.

In this paper we investigate a novel reason for tractability: having at least one variable ordering for which the number of partial solutions to the first n variables is bounded by a polynomial in n.

We show that the presence of sufficient functional constraints can guarantee this property and we investigate the complexity of finding good variable orderings based on different notions of functionality.

What is more we identify a completely novel reason for tractability based on so called Turan sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. 2nd edition. Technical Report T2010:07, Swedish Institute of Computer Science, SICS, Isafjordsgatan 22, Box 1263, SE-164 29 Kista, Sweden (November 2010)

    Google Scholar 

  2. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings 43rd IEEE Symposium on Foundations of Computer Science, FOCS 2002, pp. 649–658. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  3. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction on trees: Hybrid tractability and variable elimination. Artif. Intell. 174(9-10), 570–584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. David, P.: Prise en compte de la sémantique dans les probl ‘emes de satisfaction de contraintes: étude des contraintes fonctionnelles. PhD thesis, LIRMM, Université Montpellier II (1994)

    Google Scholar 

  5. David, P.: Using pivot consistency to decompose and solve functional csps. J. Artif. Intell. Res. (JAIR) 2, 447–474 (1995)

    MATH  Google Scholar 

  6. Deville, Y., Van Hentenryck, P.: An efficient arc consistency algorithm for a class of csp problems. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, vol. 1, pp. 325–330. Morgan Kaufmann Publishers Inc., San Francisco (1991)

    Google Scholar 

  7. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal of Computing 28(1), 57–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grohe, M.: The structure of tractable constraint satisfaction problems. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 58–72. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: SODA, pp. 289–298. ACM Press, New York (2006)

    Chapter  Google Scholar 

  10. Jeavons, P.G., Cohen, D.A., Gyssens, M.: A test for tractability. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)

    Google Scholar 

  11. Jegou, P.: Decomposition of domains based on the micro-structure of finite constraint-satisfaction problems. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 731–736. AAAI Press, Menlo Park (1993)

    Google Scholar 

  12. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  13. Salamon, A.Z., Jeavons, P.G.: Perfect constraints are tractable. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 524–528. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Sidorenko, A.F.: Precise values of turan numbers. Mathematical Notes 42, 913–918 (1987), 10.1007/BF01137440

    Article  MATH  Google Scholar 

  15. Szeider, S.: Backdoor sets for dll subsolvers. J. Autom. Reasoning 35(1-3), 73–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Turan, P.: Research problems. Publ. Hung. Acad. Sci. 6, 417–423 (1961)

    Google Scholar 

  17. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 1173–1178. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, D.A., Cooper, M.C., Green, M.J., Marx, D. (2011). On Guaranteeing Polynomially Bounded Search Tree Size. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics