Abstract
The success of the deployment of decision support systems heavily relies on the design of knowledge bases. In particular, assessing the quality of instanced data helps ensure an appropriate use of the knowledge. We present a collaborative editor for procedural knowledge that manages specific information about the quality of the data called into the procedures. Experimentations by a panel of users notably show that information being correctly interpreted and necessary to draw optimal procedures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Redman, T.: Impact of Poor Data Quality on Typical Enterprise. Com. of ACM (1998)
Asproth, V.: Visualisation of Data Quality in Decision-Support Systems. International Journal of Applied Systemic Studies 1(3) (2007)
Shankaranarayanan, G., Cai, Y.: Supporting Data Quality Management in Decision-Making. Decision Support Systems 42(1) (2006)
Pipino, L., Lee, Y., Wang, R.: Data Quality Assessment. Com. of ACM 45(4) (2002)
Tamisier, T., Didry, Y., Parisot, O., Feltz, F.: A Collaborative Reasoning Maintenance System for a Reliable Application of Legislations. In: Luo, Y. (ed.) CDVE 2009. LNCS, vol. 5738, pp. 313–316. Springer, Heidelberg (2009)
Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understandings of Hierarchical System Structures. IEEE Trans. in Systems Man & Cybernetics 11(2) (1981)
Even, A., et al.: Utility-Driven Assessment of Data Quality. ACM SIGMIS Database (2007)
Wang, R., et al.: Beyond accuracy. Journal of Management Information Systems (1996)
Wang, R., et al.: Data Quality Requirements... In: Proc. of Intl. Conf. of Data Eng. (1993)
Hao, C., et al.: Business Process Impact Visualization... Information Visualization (2006)
Herman, I., Delest, M., Melancon, G.: Tree Visualisation and Navigation Clues for Information Visualisation. Computer Graphics Forum 17(2) (1998)
Xie, Z., et al.: Exploratory Visualization of Multivariate Data with Variable Quality. Computer Science Department, Worcester Polytechnic Institute, USA (2006)
Wittenbrink, C., Pang, A., Lodha, S.: Glyphs for Visualizing Uncertainty in Vector Field. IEEE Transactions on Visualization and Computer Graphics (1995)
Skeels, M., et al.: Revealing uncertainty for infor. vis. Information Visualization (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wax, J., Otjacques, B., Tamisier, T., Parisot, O., Didry, Y., Feltz, F. (2011). Modeling Decisional Knowledge with the Help of Data Quality Information. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2011. Lecture Notes in Computer Science, vol 6874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23734-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-23734-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23733-1
Online ISBN: 978-3-642-23734-8
eBook Packages: Computer ScienceComputer Science (R0)