Modeling Decisional Knowledge with the Help of Data Quality Information | SpringerLink
Skip to main content

Modeling Decisional Knowledge with the Help of Data Quality Information

  • Conference paper
Cooperative Design, Visualization, and Engineering (CDVE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6874))

  • 963 Accesses

Abstract

The success of the deployment of decision support systems heavily relies on the design of knowledge bases. In particular, assessing the quality of instanced data helps ensure an appropriate use of the knowledge. We present a collaborative editor for procedural knowledge that manages specific information about the quality of the data called into the procedures. Experimentations by a panel of users notably show that information being correctly interpreted and necessary to draw optimal procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Redman, T.: Impact of Poor Data Quality on Typical Enterprise. Com. of ACM (1998)

    Google Scholar 

  2. Asproth, V.: Visualisation of Data Quality in Decision-Support Systems. International Journal of Applied Systemic Studies 1(3) (2007)

    Google Scholar 

  3. Shankaranarayanan, G., Cai, Y.: Supporting Data Quality Management in Decision-Making. Decision Support Systems 42(1) (2006)

    Google Scholar 

  4. Pipino, L., Lee, Y., Wang, R.: Data Quality Assessment. Com. of ACM 45(4) (2002)

    Google Scholar 

  5. Tamisier, T., Didry, Y., Parisot, O., Feltz, F.: A Collaborative Reasoning Maintenance System for a Reliable Application of Legislations. In: Luo, Y. (ed.) CDVE 2009. LNCS, vol. 5738, pp. 313–316. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understandings of Hierarchical System Structures. IEEE Trans. in Systems Man & Cybernetics 11(2) (1981)

    Google Scholar 

  7. Even, A., et al.: Utility-Driven Assessment of Data Quality. ACM SIGMIS Database (2007)

    Google Scholar 

  8. Wang, R., et al.: Beyond accuracy. Journal of Management Information Systems (1996)

    Google Scholar 

  9. Wang, R., et al.: Data Quality Requirements... In: Proc. of Intl. Conf. of Data Eng. (1993)

    Google Scholar 

  10. Hao, C., et al.: Business Process Impact Visualization... Information Visualization (2006)

    Google Scholar 

  11. Herman, I., Delest, M., Melancon, G.: Tree Visualisation and Navigation Clues for Information Visualisation. Computer Graphics Forum 17(2) (1998)

    Google Scholar 

  12. Xie, Z., et al.: Exploratory Visualization of Multivariate Data with Variable Quality. Computer Science Department, Worcester Polytechnic Institute, USA (2006)

    Google Scholar 

  13. Wittenbrink, C., Pang, A., Lodha, S.: Glyphs for Visualizing Uncertainty in Vector Field. IEEE Transactions on Visualization and Computer Graphics (1995)

    Google Scholar 

  14. Skeels, M., et al.: Revealing uncertainty for infor. vis. Information Visualization (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wax, J., Otjacques, B., Tamisier, T., Parisot, O., Didry, Y., Feltz, F. (2011). Modeling Decisional Knowledge with the Help of Data Quality Information. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2011. Lecture Notes in Computer Science, vol 6874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23734-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23734-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23733-1

  • Online ISBN: 978-3-642-23734-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics