Output-Sensitive Listing of Bounded-Size Trees in Undirected Graphs | SpringerLink
Skip to main content

Output-Sensitive Listing of Bounded-Size Trees in Undirected Graphs

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

Abstract

Motivated by the discovery of combinatorial patterns in an undirected graph G with n vertices and m edges, we study the problem of listing all the trees with k vertices that are subgraphs of G. We present the first optimal output-sensitive algorithm, i.e. runs in O(sk) time where s is the number of these trees in G, and uses O(m) space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alm, E., Arkin, A.P.: Biological networks. Current Opinion in Structural Biology 13(2), 193–202 (2003)

    Article  Google Scholar 

  2. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65(1-3), 21–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gabow, H.N., Myers, E.W.: Finding all spanning trees of directed and undirected graphs. SIAM Journal on Computing 7(3), 280–287 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kapoor, S., Ramesh, H.: Algorithms for enumerating all spanning trees of undirected and weighted graphs. SIAM Journal on Computing 24, 247–265 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  6. Minty, G.: A simple algorithm for listing all the trees of a graph. IEEE Transactions on Circuit Theory 12(1), 120 (1965)

    Article  Google Scholar 

  7. Moon, J.: Counting Labelled Trees, Canadian Mathematical Monographs, No. 1. Canadian Mathematical Congress, Montreal (1970)

    Google Scholar 

  8. Nakano, S.I., Uno, T.: Constant time generation of trees with specified diameter. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) Graph -Theoretic Concepts in Computer Science. LNCS, vol. 3353, pp. 33–45. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks (1975)

    Google Scholar 

  10. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning trees of undirected graphs. SIAM Journal on Computing 26, 678–692 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferreira, R., Grossi, R., Rizzi, R. (2011). Output-Sensitive Listing of Bounded-Size Trees in Undirected Graphs. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics