Abstract
Ant Colony Optimization (ACO) has been successfully employed to tackle a variety of hard combinatorial optimization problems, including the traveling salesman problem, vehicle routing, sequential ordering and timetabling. ACO, as a swarm intelligence framework, mimics the indirect communication strategy employed by real ants mediated by pheromone trails. Among the several algorithms following the ACO general framework, the Ant Colony System (ACS) has obtained convincing results in a range of problems. In Software Engineering, the effective application of ACO has been very narrow, being restricted to a few sparse problems. This paper expands this applicability, by adapting the ACS algorithm to solve the well-known Software Release Planning problem in the presence of dependent requirements. The evaluation of the proposed approach is performed over 72 synthetic datasets and considered, besides ACO, the Genetic Algorithm and Simulated Annealing. Results are consistent to show the ability of the proposed ACO algorithm to generate more accurate solutions to the Software Release Planning problem when compared to Genetic Algorithm and Simulated Annealing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Harman, M.: The Current State and Future of Search Based Software Engineering. In: Proc. of International Conference on Software Engineering / Future of Software Engineering 2007 (ICSE/FOSE 2007), pp. 342–357. IEEE Computer Society, Minneapolis (2007)
Dorigo, M., Stutzle, T.: The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, Norwell, MA (2002)
Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Systems, Man Cybernetics, Part B 26(1), 29–41 (1996)
Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans. Evolutionary Computation 1(1), 53–66 (1997)
Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Metaheuristics for the vehicle routing problem with stochastic demands. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 450–460. Springer, Heidelberg (2004)
Gambardella, L.M., Dorigo, M.: Ant Colony System hybridized with a new local search for the sequential ordering problem. Informs. J. Comput. 12(3), 237 (2000)
Socha, K., Sampels, M., Manfrin, M.: Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 334–345. Springer, Heidelberg (2003)
Mahanti, P.K., Banerjee, S.: Automated Testing in Software Engineering: using Ant Colony and Self-Regulated Swarms. In: Proc. of the 17th IASTED International Conference on Modelling and Simulation (MS 2006), pp. 443–448. ACTA Press, Montreal (2006)
Chicano, F., Alba, E.: Ant Colony Optimization with Partial Order Reduction for Discovering Safety Property Violations in Concurrent Models. Information Processing Letters 106(6), 221–231 (2007)
del Sagrado, J., del Águila, I.M.: Ant Colony Optimization for requirement selection in incremental software development. In: Proc. of 1st International Symposioum on Search Based Software Engineering (SSBSE 2009), Cumberland Lodge, UK (2009), http://www.ssbse.org/2009/fa/ssbse2009_submission_30.pdf (fast abstracts)
del Sagrado, J., del Águila, I.M., Orellana, F.J.: Ant Colony Optimization for the Next Release Problem: A Comparative Study. In: Proc. of the 2nd International Symposium on Search Based Software Engineering (SSBSE 2010), Benevento, IT, pp. 67–76 (2010)
Karlsson, J., Olsson, S., Ryan, K.: Improved practical support for large-scale requirements prioritising. Requirements Engineering 2(1), 51–60 (1997)
Bagnall, A., Rayward-Smith, V., Whittley, I.: The next release problem. Information and Software Technology 43(8), 883–890 (2001)
Zhang, Y., Harman, M., Mansouri, S.A.: The multiobjective next release problem. In: Proc. of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1129–1137. ACM Press, New York (2007)
Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Information & Technology 46(4), 243–253 (2004)
Holland, J.: Adaptation in natural and artificial systems. Univ. of Michigan Press (1975)
Kirkpatrick, S., Gelatt, Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Alaya, I., Solnon, G., Ghedira, K.: Ant algorithm for the multidimensional knapsack problem. In: Proc. of the International Conference on Bio-inspired Optimization Methods and their Applications (BIOMA 2004), pp. 63–72 (2004)
Leguizamon, G., Michalewicz, Z.: A new version of Ant System for Subset Problem. In: Congress on Evolutionary Computation, pp. 1459–1464 (1999)
Fidanova, S.: Evolutionary Algorithm for Multidimensional Knapsack Problem. In: PPSNVII- Workshop (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Souza, J.T., Maia, C.L.B., Ferreira, T.d.N., Carmo, R.A.F.d., Brasil, M.M.A. (2011). An Ant Colony Optimization Approach to the Software Release Planning with Dependent Requirements. In: Cohen, M.B., Ó Cinnéide, M. (eds) Search Based Software Engineering. SSBSE 2011. Lecture Notes in Computer Science, vol 6956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23716-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-23716-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23715-7
Online ISBN: 978-3-642-23716-4
eBook Packages: Computer ScienceComputer Science (R0)