Energy Efficient Data Aggregation in Solar Sensor Networks | SpringerLink
Skip to main content

Energy Efficient Data Aggregation in Solar Sensor Networks

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6843))

  • 1005 Accesses

Abstract

Solar sensor nodes, equipped with micro-solar subsystems [1], provide a new way to harvest ambient energy and also bring new challenges. This paper constructs an Energy Efficient Data Aggregation Tree (EDAT) based on a Maximal Weighted Connected Dominator Set (MaCDS). EDAT arms to prolong the network lifetime by minimizing the difference of energy consumption among solar nodes while we consider that harvested energy \({\mathcal{H}}\) randomly and uniformly distributes in the interval \({[{\mathcal{H}}_{min},{\mathcal{H}}_{max}]}\). The total energy consumption difference of EDAT is at most \(\frac{5{\overline{\mathcal{H}}}|{\mathcal{S}}|^2}{n-1}\), where \({\overline{\mathcal{H}}}=|{[{\mathcal{H}}_{min},{\mathcal{H}}_{max}]}|\) and \({\mathcal{S}}\) is the dominator set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Taneja, J., Jeong, J., Culler, D.: Design, modeling, and capacity planning for micro-solar power sensor networks. In: IPSN, pp. 407–418 (2008)

    Google Scholar 

  2. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  3. Jiang, X., Polastre, J., Culler, D.: Perpetual environmentally powered sensor networks. In: IPSN, pp. 463–468 (2005)

    Google Scholar 

  4. Zhu, T., Zhong, Z., Gu, Y., He, T., Zhang, Z.L.: Leakage-aware energy synchronization for wireless sensor networks. In: Mobisys, pp. 319–332 (2009)

    Google Scholar 

  5. Chen, W., Mitra, U.: Energy efficient scheduling with individual packet delay constraints. In: IEEE INFOCOM (2006)

    Google Scholar 

  6. Yang, Y., Wang, L., Noh, D.K., Le, H.K., Abdelzaher, T.F.: Solarstore: enhancing data reliability in solar-powered storage-centric sensor networks. In: MobiSys, pp. 333–346 (2009)

    Google Scholar 

  7. Zou, F., Wang, Y., Xu, X.H., Li, X., Du, H., Wan, P., Wu, W.: New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs. Theoretical Computer Science (2009)

    Google Scholar 

  8. Alicherry, M., Bhatia, R., Li, L.E.: Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks. In: ACM MobiCom, page 72 (2005)

    Google Scholar 

  9. Wang, Y., Wang, W., Li, X.Y., Song, W.Z.: Interference-aware joint routing and TDMA link scheduling for static wireless networks. IEEE TPDS, 1709–1725 (2008)

    Google Scholar 

  10. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-hop wireless network performance. Wireless Networks 11(4), 471–487 (2005)

    Article  Google Scholar 

  11. Li, D., Du, H., Wan, P.J., Gao, X., Zhang, Z., Wu, W.: Construction of strongly connected dominating sets in asymmetric multihop wireless networks. Theoretical Computer Science 410(8-10), 661–669 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thai, M.T., Wang, F., Liu, D., Zhu, S., Du., D.Z.: Connected dominating sets in wireless networks with different transmission ranges. IEEE TOMC, 721–730 (2007)

    Google Scholar 

  13. Wang, Y., Wang, W.Z., Li, X.Y.: Distributed low-cost backbone formation for wireless ad hoc networks. In: MobiHoc, pp. 2–13 (2005)

    Google Scholar 

  14. Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. Mobile Networks and Applications 9(2), 141–149 (2004)

    Article  Google Scholar 

  15. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Thai, M.T., Tiwari, R., zhu Du, D.: On construction of virtual backbone in wireless ad hoc networks with unidirectional links. IEEE TOMC 7(9), 1098–1109 (2008)

    Google Scholar 

  17. Li, X.: Wireless Ad Hoc and Sensor Networks: Theory and Applications. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  18. Chandra, T.K., Chatterjee, D.: A first course in probability. Alpha Science Intl. Ltd. (2005)

    Google Scholar 

  19. Dai, D., Yu, C.: A 5+ε-approximation algorithm for minimum weighted dominating set in unit disk graph. Theoretical Computer Science 410(8-10), 756–765 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, K., Yu, J., Hsu, J., Zahedi, S., Lee, D., Friedman, J., Kansal, A., Raghunathan, V., Srivastava, M.: Heliomote: enabling long-lived sensor networks through solar energy harvesting. In: SenSys, pp. 309–309 (2005)

    Google Scholar 

  21. Dutta, P., Hui, J., Jeong, J., Kim, S., Sharp, C., Taneja, J., Tolle, G., Whitehouse, K., Culler, D.: Trio: Enabling sustainable and scalable outdoor wireless sensor network deployments. In: IPSN, pp. 407–415 (2006)

    Google Scholar 

  22. Park, C., Chou, P.H.: Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes. SECON 1 (2006)

    Google Scholar 

  23. Park, C., Chou, P.H.: Power utility maximization for multiple-supply systems by a load-matching switch. In: ISLPED 2004, pp. 168–173 (2004)

    Google Scholar 

  24. Wang, L., Yang, Y., Noh, D.K., Le, H.K., Liu, J., Abdelzaher, T.F., Ward, M.: AdaptSens: An adaptive data collection and storage service for solar-powered sensor networks. In: 2009 30th IEEE Real-Time Systems Symposium, pp. 303–312. IEEE, Los Alamitos (2009)

    Chapter  Google Scholar 

  25. Yang, Y., Su, L., Gao, Y., Abdelzaher, T.F.: Solarized: Utilizing erasure codes for reliable data delivery in solar-powered wireless sensor networks. In: INFOCOM, pp. 1–5 (2010)

    Google Scholar 

  26. Lattanzi, E., Regini, E., Acquaviva, A., Bogliolo, A.: Energetic sustainability of routing algorithms for energy-harvesting wireless sensor networks. Computer Communications 30(14-15), 2976–2986 (2007)

    Article  Google Scholar 

  27. Alzoubi, K., Wan, P.J., Frieder, O.: New distributed algorithm for connected dominating set in wireless ad hoc networks. In: HICSS, p. 297 (2002)

    Google Scholar 

  28. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86, 165–177 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. Mob. Netw. Appl. 9(2), 141–149 (2004)

    Article  Google Scholar 

  30. Das, B., Marano, S., Molinaro, A., Serra, G.: Routing in ad-hoc networks using minimum connected dominating sets. IEEE ICC 1, 376–380 (1997)

    Google Scholar 

  31. Wu, J., Li, H.L.: On calculating connected dominating set for efficient routing in ad hoc wireless network. In: DIAL-M, pp. 7–14 (1999)

    Google Scholar 

  32. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks. In: IEEE TPDS, pp. 14–25 (2002)

    Google Scholar 

  33. Ambühl, C., Erlebach, T., Mihalák, M., Numkesser, M.: Constant-factor approxiamtion for minimum-weight connected dominating sets in unit disk graphs. In: Approx-Random, pp. 3–14 (2006)

    Google Scholar 

  34. Huang, Y., Gao, X., Zhang, Z., Wu, W.: A better constant-factor approximation for weighted dominating set in unit disk graph. Journal of Combinatorial Optimization 18(2), 179–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Tang, S., Shen, X., Dai, G. (2011). Energy Efficient Data Aggregation in Solar Sensor Networks. In: Cheng, Y., Eun, D.Y., Qin, Z., Song, M., Xing, K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2011. Lecture Notes in Computer Science, vol 6843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23490-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23490-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23489-7

  • Online ISBN: 978-3-642-23490-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics