A Combinatorial Framework for Designing (Pseudoknotted) RNA Algorithms | SpringerLink
Skip to main content

A Combinatorial Framework for Designing (Pseudoknotted) RNA Algorithms

  • Conference paper
Algorithms in Bioinformatics (WABI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6833))

Included in the following conference series:

Abstract

We extend an hypergraph representation, introduced by Finkelstein and Roytberg, to unify dynamic programming algorithms in the context of RNA folding with pseudoknots. Classic applications of RNA dynamic programming (Energy minimization, partition function, base-pair probabilities…) are reformulated within this framework, giving rise to very simple algorithms. This reformulation allows one to conceptually detach the conformation space/energy model – captured by the hypergraph model – from the specific application, assuming unambiguity of the decomposition. To ensure the latter property, we propose a new combinatorial methodology based on generating functions. We extend the set of generic applications by proposing an exact algorithm for extracting generalized moments in weighted distribution, generalizing a prior contribution by Miklos and al. Finally, we illustrate our full-fledged programme on three exemplary conformation spaces (secondary structures, Akutsu’s simple type pseudoknots and kissing hairpins). This readily gives sets of algorithms that are either novel or have complexity comparable to classic implementations for minimization and Boltzmann ensemble applications of dynamic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104(1-3), 45–62 (2000)

    Article  MATH  Google Scholar 

  2. Alkan, C., Karakoç, E., Nadeau, J.H., Şahinalp, S.C., Zhang, K.: RNA-RNA Interaction Prediction and Antisense RNA Target Search. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 152–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Andronescu, M., Fejes, A.P., Hutter, F., Hoos, H.H., Condon, A.: A New Algorithm for RNA Secondary Structure Design. J. Mol. Biol. 336(3), 607–624 (2004)

    Article  Google Scholar 

  4. Bekaert, M., Bidou, L., Denise, A., Duchateau-Nguyen, G., Forest, J., Froidevaux, C., Hatin, I., Rousset, J., Termier, M.: Towards a computational model for – 1 eukaryotic frameshifting sites. Bioinformatics 19, 327–335 (2003)

    Article  Google Scholar 

  5. Bousquet-Mélou, M., Ponty, Y.: Culminating paths. Discrete Mathematics and Theoretical Computer Science 10(2), 125–152 (2008)

    MATH  Google Scholar 

  6. Cao, S., Chen, S.J.: Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res. 34(9), 2634–2652 (2006)

    Article  Google Scholar 

  7. Cao, S., Chen, S.J.: Predicting structured and stabilities for H-type pseudoknots with interhelix loop. RNA 15, 696–706 (2009)

    Article  Google Scholar 

  8. Chen, H.L., Condon, A., Jabbari, H.: An O(n(5)) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids. Journal of Computational Biology 16(6), 803–815 (2009)

    Article  Google Scholar 

  9. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)

    Article  MATH  Google Scholar 

  10. Denise, A., Ponty, Y., Termier, M.: Controlled non uniform random generation of decomposable structures. Theoretical Computer Science 411(40-42), 3527–3552 (2010)

    Article  MATH  Google Scholar 

  11. Ding, Y., Chan, C.Y., Lawrence, C.E.: RNA secondary structure prediction by centroids in a boltzmann weighted ensemble. RNA 11, 1157–1166 (2005)

    Article  Google Scholar 

  12. Ding, Y., Lawrence, E.: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31(24), 7280–7301 (2003)

    Article  Google Scholar 

  13. Dirks, R., Pierce, N.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24, 1664–1677 (2003)

    Article  Google Scholar 

  14. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)

    Article  Google Scholar 

  15. Ferrè, F., Ponty, Y., Lorenz, W.A., Clote, P.: DIAL: A web server for the pairwise alignment of two RNA 3-dimensional structures using nucleotide, dihedral angle and base pairing similarities. Nucleic Acids Res. 35 (Web server issue), W659–W668 (July 2007)

    Google Scholar 

  16. Finkelstein, A.V., Roytberg, M.A.: Computation of biopolymers: a general approach to different problems. Biosystems 30(1-3), 1–19 (1993)

    Article  Google Scholar 

  17. Flajolet, P., Zimmermann, P., Van Cutsem, B.: Calculus for the random generation of labelled combinatorial structures. Theoretical Computer Science 132, 1–35 (1994), a preliminary version is available in INRIA Research Report RR-1830

    Article  MATH  Google Scholar 

  18. Flajolet, P.: Analytic models and ambiguity of context-free languages. Theoretical Computer Science 49, 283–309 (1987)

    Article  MATH  Google Scholar 

  19. Giegerich, R.: A systematic approach to dynamic programming in bioinformatics. Bioinformatics 16(8), 665–677 (2000)

    Article  Google Scholar 

  20. Hamada, M., Kiryu, H., Sato, K., Mituyama, T., Asai, K.: Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics 25(4), 465–473 (2009)

    Article  Google Scholar 

  21. Harmanci, A.O., Sharma, G., Mathews, D.H.: Stochastic sampling of the rna structural alignment space. Nucleic Acids Res. 37(12), 4063–4075 (2009)

    Article  Google Scholar 

  22. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res. 31(13), 3429–3431 (2003)

    Article  Google Scholar 

  23. Huang, F.W.D., Peng, W.W.J., Reidys, C.M.: Folding 3-noncrossing rna pseudoknot structures. J. Comput. Biol. 16(11), 1549–1575 (2009)

    Article  Google Scholar 

  24. Huang, F.W.D., Qin, J., Reidys, C.M., Stadler, P.F.: Target prediction and a statistical sampling algorithm for RNA-RNA interaction. Bioinformatics 26(2), 175–181 (2010)

    Article  Google Scholar 

  25. Kucherov, G., Noe, L., Ponty, Y.: Estimating seed sensibility on homogenous alignments. In: IEEE (ed.) Proceedings of Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2004), p. 387 (2004)

    Google Scholar 

  26. Lefebvre, F.: A grammar-based unification of several alignment and folding algorithms. In: Proceedings of the Fourth International Conference on Intelligent Systems for Molecular Biology, pp. 143–154. AAAI Press, Menlo Park (1996)

    Google Scholar 

  27. Lefebvre, F.: Grammaires S-attribuées multi-bandes et applications à l’analyse automatique de séquences biologiques. Ph.D. thesis, École Polytechnique (1997)

    Google Scholar 

  28. Lescoute, A., Westhof, E.: Topology of three-way junctions in folded RNAs. RNA 12(1), 83–93 (2006)

    Article  Google Scholar 

  29. Lorenz, W., Ponty, Y., Clote, P.: Asymptotics of RNA shapes. Journal of Computational Biology 15(1), 31–63 (2008)

    Article  Google Scholar 

  30. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. Journal of Computational Biology 7(3-4), 409–427 (2000)

    Article  Google Scholar 

  31. Markham, N.R.: Algorithms and software for nucleic acid sequences. Ph.D. thesis, Faculty of Rensselaer Polytechnic Institute (2006)

    Google Scholar 

  32. Markham, N.R., Zuker, M.: UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008)

    Article  Google Scholar 

  33. Mathews, D.H.: Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10(8), 1178–1190 (2004)

    Article  Google Scholar 

  34. Mathews, D., Sabina, J., Zuker, M., Turner, D.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  35. McCaskill, J.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  Google Scholar 

  36. Mückstein, U., Hofacker, I.L., Stadler, P.F.: Stochastic pairwise alignments. Bioinformatics 18(suppl. 2), S153–S160 (2002)

    Article  Google Scholar 

  37. Möhl, M., Will, S., Backofen, R.: Lifting prediction to alignment of rna pseudoknots. J. Comput. Biol. 17(3), 429–442 (2010), http://dx.doi.org/10.1089/cmb.2009.0168

    Article  MATH  Google Scholar 

  38. Miklós, I., Meyer, I.M., Nagy, B.: Moments of the boltzmann distribution for RNA secondary structures. Bull. Math. Biol. 67(5), 1031–1047 (2005)

    Article  MATH  Google Scholar 

  39. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single stranded RNA. Proc. Natl. Acad. Sci. USA 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  40. Parisien, M., Major, F.: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183), 51–55 (2008)

    Article  Google Scholar 

  41. Ponty, Y.: Efficient sampling of RNA secondary structures from the boltzmann ensemble of low-energy: The boustrophedon method. J. Math. Biol. 56(1-2), 107–127 (2008)

    Article  MATH  Google Scholar 

  42. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004)

    Article  Google Scholar 

  43. Reeder, J., Steffen, P., Giegerich, R.: Effective ambiguity checking in biosequence analysis. BMC Bioinformatics 6, 153 (2005)

    Article  Google Scholar 

  44. Reidys, C.M., Huang, F.W.D., Andersen, J.E., Penner, R.C., Stadler, P.F., Nebel, M.E.: Topology and prediction of rna pseudoknots. Bioinformatics 27(8), 1076–1085 (2011)

    Article  Google Scholar 

  45. Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285, 2053–2068 (1999)

    Article  Google Scholar 

  46. Sankoff, D.: Simultaneous solution of the rna folding, alignment and protosequence problems. SIAM J. Appl. Math. 45, 810–825 (1985)

    Article  MATH  Google Scholar 

  47. Saule, C.: Modèles combinatoires des structures d’ARN avec ou sans pseudonoeuds, application à la comparaison de structures. Ph.D. thesis, Université Paris Sud, Ecole doctorale informatique (December 2010)

    Google Scholar 

  48. Saule, C., Régnier, M., Steyaert, J.M., Denise, A.: Counting RNA pseudoknotted structures. Journal of Computational Biology (to appear)

    Google Scholar 

  49. Thachuk, C., Manuch, J., Rafiey, A., Mathieson, L.A., Stacho, L., Condon, A.: An algorithm for the energy barrier problem without pseudoknots and temporary arcs. In: Pac. Symp. Biocomput., pp. 108–119 (2010)

    Google Scholar 

  50. Theis, C., Janssen, S., Giegerich, R.: Prediction of RNA secondary structure including kissing hairpin motifs. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 52–64. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  51. Tinoco, I., Borer, P.N., Dengler, B., Levin, M.D., Uhlenbeck, O.C., Crothers, D.M., Bralla, J.: Improved estimation of secondary structure in ribonucleic acids. Nat. New. Biol. 246(150), 40–41 (1973)

    Article  Google Scholar 

  52. Vernizzi, G., Ribeca, P., Orland, H., Zee, A.: Topology of pseudoknotted homopolymers. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 73(3), 031902 (2006)

    Article  Google Scholar 

  53. Waldispühl, J., Devadas, S., Berger, B., Clote, P.: Efficient algorithms for probing the RNA mutation landscape. PLoS Comput Biol 4(8), e1000124 (2008)

    Article  Google Scholar 

  54. Waterman, M.S.: Secondary structure of single stranded nucleic acids. Advances in Mathematics Supplementary Studies 1(1), 167–212 (1978)

    MATH  Google Scholar 

  55. Wilf, H.S.: A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects. Advances in Mathematics 24, 281–291 (1977)

    Article  MATH  Google Scholar 

  56. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ponty, Y., Saule, C. (2011). A Combinatorial Framework for Designing (Pseudoknotted) RNA Algorithms. In: Przytycka, T.M., Sagot, MF. (eds) Algorithms in Bioinformatics. WABI 2011. Lecture Notes in Computer Science(), vol 6833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23038-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23038-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23037-0

  • Online ISBN: 978-3-642-23038-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics