Guideline Recommendation Text Disambiguation, Representation and Testing | SpringerLink
Skip to main content

Guideline Recommendation Text Disambiguation, Representation and Testing

  • Conference paper
Artificial Intelligence in Medicine (AIME 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6747))

Included in the following conference series:

  • 1619 Accesses

Abstract

This paper describes a knowledge acquisition tool for translating a guideline recommendation into a computer-interpretable format. The novelty of the tool is that it is addressed to the domain experts, and it helps them to disambiguate the natural language, by decomposing the recommendation into elements, eliciting tacit and implicit knowledge hidden into a recommendation and its context, mapping patient’s data, available from the electronic record, to standard terms and immediately testing the formalised rule using past cases data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Panzarasa, S., Maddè, S., Quaglini, S., Pistarini, C., Stefanelli, M.: Evidence-based careflow management systems: the case of post-stroke rehabilitation. Journal of Biomedical Informatics 35, 123–139 (2002)

    Article  Google Scholar 

  2. Panzarasa, S., Quaglini, S., Cavallini, A., Marcheselli, S., Stefanelli, M., Micieli, G.: Computerised Guidelines Implementation: Obtaining Feedback for Revision of Guidelines, Clinical Data Model and Data Flow. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 461–466. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Musen, M.A.: An overview of knowledge Acquisition. In: David, J.M., Krivine, J.P., Simmons, R. (eds.) Second Generation Expert Systems, pp. 405–427. Springer, New York (1993)

    Chapter  Google Scholar 

  4. Lanzola, G., Quaglini, S., Stefanelli, M.: Knowledge-Acquisition Tools for Medical Knowledge-Based Systems. Methods of Information in Medicine 34, 25–39 (1995)

    Google Scholar 

  5. Serban, R., Puig-Centelles, A., ten Teije, A.: Incremental guideline formalization with tool support. Artificial Intelligence Applications and Innovations IFIP International Federation for Information Processing 204, 106–118 (2006)

    Article  Google Scholar 

  6. Terenziani, P., Montani, S., Bottrighi, A., Molino, G., Torchio, M.: Applying artificial intelligence to clinical guidelines: the GLARE approach. Studies in Health Technology and Informatics 139, 273–282 (2008)

    Google Scholar 

  7. Peleg, M., Sagi, K., Denekamp, Y.: Mapping Computerized Clinical Guidelines to Electronic Medical Records: Knowledge-Data Ontological Mapper (KDOM). Journal of Biomedical Informatics 41(1), 180–201 (2008)

    Article  Google Scholar 

  8. Shiffman, R.N., Michel, G., Essaihi, A.: Bridging the guideline implementation gap: a systematic approach to document-centered guideline implementation. J. Am. Med. Informatics Assoc. 11, 418–426 (2004)

    Article  Google Scholar 

  9. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Hall, R., Johnson, P.D., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E.H., Stefanelli, M.: Comparing computer-interpretable guideline models: a case-study approach. J. Am. Med. Inform. Assoc. 10(1), 52–68 (2003)

    Article  Google Scholar 

  10. Sharda, P., Das, A., Cohen, T., Patel, V.: Customizing clinical narratives for the electronic medical record interface using cognitive methods. International Journal of Medical Informatics 75, 346–368 (2006)

    Article  Google Scholar 

  11. Gschwandtner, T., Kaiser, K., Miksch, S.: Information requisition is the core of guideline-based medical care: which information is needed for whom? Journal of Evaluation in Clinical Practice, 1–9 (August 2010)

    Google Scholar 

  12. SPREAD – Stroke Prevention and Educational Awareness Diffusion. Edition of February 16 (2007), http://www.spread.it

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quaglini, S., Panzarasa, S., Cavallini, A., Micieli, G. (2011). Guideline Recommendation Text Disambiguation, Representation and Testing. In: Peleg, M., Lavrač, N., Combi, C. (eds) Artificial Intelligence in Medicine. AIME 2011. Lecture Notes in Computer Science(), vol 6747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22218-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22218-4_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22217-7

  • Online ISBN: 978-3-642-22218-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics