Social-Network Influence on Telecommunication Customer Attrition | SpringerLink
Skip to main content

Social-Network Influence on Telecommunication Customer Attrition

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6682))

Abstract

We investigate the network effects of churn in the telecommunication industry. Under calling party pays regime differentiation between on-net and off-net prices implies that customer’s calling cost depends on operators chosen by the clients he calls. We assume that clients minimize their expenses. Therefore, after a single person churn we observe churn induced in his social neighborhood. Our aim is to verify, which measures of individual position in a social network are important predictors of induced churn. We control the results for changes in market prices structure, social network structure and number of operators on the market. Using multiagent simulation we show that (a) network structure and number of operators significantly influence induced churn level and (b) weighted prestige is its important predictor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrat, A., Weigt, M.: On the properties of small-world network models. The European Physical Journal B - Condensed Matter and Complex Systems 13(3), 547–560 (2000)

    Article  Google Scholar 

  2. Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A.A., Joshi, A.: Social ties and their relevance to churn in mobile telecom networks. In: EDBT 2008: Proceedings of the 11th International Conference on Extending Database Technology, New York, NY, USA, pp. 668–677 (2008)

    Google Scholar 

  3. Datta, P., Masand, B., Mani, D.R., Li, B.: Automated Cellular Modeling and Prediction on a Large Scale. Artificial Intelligence Review 14, 485–502 (2000)

    Article  MATH  Google Scholar 

  4. Furnas, G.: Framing the wireless market. The Future of Wireless, WSA News:Bytes 17(11), 4–6 (2003)

    Google Scholar 

  5. Hadden, J., Tiwari, A., Roy, R., Ruta, D.: Churn prediction using complaints data: Proc. of world academy of science. Engineering, and Technology 13, 158–163 (2006)

    Google Scholar 

  6. Hadden, J., Tiwari, A., Roy, R., Ruta, D.: Computer assisted customer churn management: State-of-the-art and future trends. Computers & Operations Research 32, 2902–2917 (2007)

    Article  MATH  Google Scholar 

  7. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Ming Inference and Prediction. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  8. Hidalgo, C., Rodriguez-Sickert, C.: Persistence, Topology and Sociodemographics of a Mobile Phone Network. Technical report, Center for Complex Network Research, Department of Physics, University of Notre Dame (2007)

    Google Scholar 

  9. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)

    Article  MATH  Google Scholar 

  10. Kazienko, P., Bródka, P., Ruta, D.: The Influence of Customer Churn and Acquisition on Value Dynamics of Social Neighbourhoods. In: Lytras, M.D., Damiani, E., Carroll, J.M., Tennyson, R.D., Avison, D., Naeve, A., Dale, A., Lefrere, P., Tan, F., Sipior, J., Vossen, G. (eds.) WSKS 2009. LNCS, vol. 5736, pp. 491–500. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Kim, H., Yoon, C.: Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market. Telecommunications Policy 28, 751–765 (2004)

    Article  Google Scholar 

  12. Knoke, D.: Social Network Analysis in Quantitative Applications in the Social Sciences. Sage Publications, Inc., Thousand Oaks (2007)

    Google Scholar 

  13. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A Multiagent Simulation Environment. Simulation 81(7), 517–527 (2005)

    Article  Google Scholar 

  14. Newman, M.: The Structure and Function of Complex Networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Onnela, J., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., Kaski, K., Kertesz, J., Barabasi, A.: Structure and Tie Strengths in Mobile Communication Networks. Proc. Natl. Acad. Sci. USA 104, 7332–7336 (2007)

    Article  Google Scholar 

  16. Vega-Redondo, F.: Complex Social Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  17. R Development Core Team: R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing, Vienna, Austria (2010)

    Google Scholar 

  18. Richter, Y., Yom-Tov, E., Slonim, N.: Predicting customer churn in mobile networks through analysis of social groups. In: SIAM Int. Conf. on Data Mining (2010)

    Google Scholar 

  19. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  20. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 409–410 (1998)

    Article  Google Scholar 

  21. Yan, L., Miller, D.J., Mozer, M.C., Wolniewicz, R.: Improving prediction of customer behaviour in non-stationary evnironments. In: Proc. of International Joint Conference on Neural Networks, IJCNN, vol. 3, pp. 2258–2263 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wojewnik, P., Kaminski, B., Zawisza, M., Antosiewicz, M. (2011). Social-Network Influence on Telecommunication Customer Attrition. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2011. Lecture Notes in Computer Science(), vol 6682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22000-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22000-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21999-3

  • Online ISBN: 978-3-642-22000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics