Abstract
In this paper, we propose the use of graphics processing units as a low-cost and efficient solution of electromagnetic (and other) numerical problems. Based on the software platform CUDA (Compute Unified Device Architecture), a solver for unstructured sparse matrices with double precision complex data has been implemented and tested for several practical cases. Benchmark results confirm the validity of the proposed software in terms of speed-up, speed and GPU execution time.
Chapter PDF
Similar content being viewed by others
References
NVIDIA, CUDA Zone, http://www.nvidia.com/cuda
Saad, Y.: Iterative methods for sparse linear systems, 3rd edn. SIAM, Philadelphia (2000)
Smith, C.F., et al.: The biconjugate gradient method for electromagnetic scattering. IEEE Trans. on Antennas and Propagation 38, 938–940 (1990)
Harrington, R.F.: Field Computation by Moment Methods. Krieger, Melbourne (1982)
Iterative CUDA, http://mathema.tician.de/software/iterative-cuda
CUSP Library v.0.1, http://code.google.com/p/cusp-library
SpeedIT Tools, http://vratis.com/speedITblog
Buatois, L., et al.: Concurrent number cruncher - A GPU implementation of a general sparse linear solver. International Journal of Parallel, Emergent and Distributed Systems 24(3), 205–223 (2009)
Jacobs, D.A.H.: A generalization of the conjugate gradient method to solve complex systems. IMA J. Numerical Analysis. 6, 447–452 (1986)
Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Tech. Rep. NVR-2008-004, NVIDIA Corporation (December 2008)
Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. In: Nguyen, H. (ed.) GPU Gems, vol. 3. Addison Wesley, Reading (August 2007)
Davis, T.A.: The University of Florida Sparse Matrix Collection. Tech. Report of the University of Florida, http://www.cise.ufl.edu/research/sparse/matrices
Mongia, R.K., et al.: RF and Microwave Coupled-Line Circuits. Artech House, Boston (1999)
ATLAS Library, http://math-atlas.sourceforge.net
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Donno, D., Esposito, A., Monti, G., Tarricone, L. (2011). Iterative Solution of Linear Systems in Electromagnetics (And Not Only): Experiences with CUDA. In: Guarracino, M.R., et al. Euro-Par 2010 Parallel Processing Workshops. Euro-Par 2010. Lecture Notes in Computer Science, vol 6586. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21878-1_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-21878-1_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21877-4
Online ISBN: 978-3-642-21878-1
eBook Packages: Computer ScienceComputer Science (R0)