Fusion of Multi-spectral Image Using Non-separable Additive Wavelets for High Spatial Resolution Enhancement | SpringerLink
Skip to main content

Fusion of Multi-spectral Image Using Non-separable Additive Wavelets for High Spatial Resolution Enhancement

  • Conference paper
Image Analysis and Recognition (ICIAR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6753))

Included in the following conference series:

  • 1067 Accesses

Abstract

In order to solve the problems that the image fusion method based on separable discrete wavelet transform is lower in spatial resolution and there is block effect in fused image, a new multispectral image fusion method based on non-separable wavelets with compactly support, symmetry, orthogonality, and dilation matrix [2,0;0,2] is proposed. A construction method of four channels 6 × 6 filter banks is presented. Using the low-pass filter constructed, multispectral images are fused. Three fusion methods called NAWS, NAWRGB and NAWL are proposed in the fusion of multispectral image and panchromatic image. Every fusion method presented outperforms the corresponding fusion method of the AWS, the AWRGB and the AWL in preserving high spatial resolution information respectively, and the higher spatial resolution fused image can be obtained. Of all fusion methods, the non-separable additive wavelet substitution (NAWS) method has the best performance in preserving higher spatial resolution information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pohl, C., Van Genderen, J.L.: Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications. International Journal of Remote Sensing 19(5), 823–854 (1998)

    Article  Google Scholar 

  2. Thomas, C., Ranchin, T., Wald, L., Chanussot, J.: Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics. IEEE Transaction on Geoscience and Remote Sensing 46(5), 1301–1312 (2008)

    Article  Google Scholar 

  3. Zhou, J., Civco, D.L., Silander, J.A.: A Wavelet Transform Method to Merge Landsat TM and SPOT Panchromatic Data. International Journal of Remote Sensing 19(4), 743–757 (1998)

    Article  Google Scholar 

  4. Heng, C., Weile, Z.: Fusion of IKONOS Satellite Imagery Using IHS Transform and Local Variation. IEEE Geoscience and Remote Sensing Letters 5(4), 653–657 (2008)

    Article  Google Scholar 

  5. Moshoua, D., Bravoa, C., Oberti, R., Westl, J., Bodria, L., McCartney, A., Ramon, H.: Plant Disease Detection Based on Data Fusion of Hyper-spectral and Multi-spectral Fluorescence Imaging Using Kohonen Maps. Real-Time Imaging 11(2), 75–83 (2005)

    Article  Google Scholar 

  6. Yun, Z., Gang, H.: An IHS and Wavelet Integrated Approach to Improve Pan-sharpening Visual Quality of Natural Colour IKONOS and QuickBird Images. Information Fusion 6(3), 225–234 (2005)

    Article  Google Scholar 

  7. Te-Ming, T., Shun-Chi, S., Hsuen-Chyun, S., Ping, S.H.: A New Look at HIS-like Image Fusion Methods. Information Fusion 2(3), 177–186 (2001)

    Article  Google Scholar 

  8. Wang, Z., Ziou, D., Armenakis, C., Li, D., Li, Q.: A Comparative Analysis of Image Fusion Methods. IEEE Transactions on Geoscience and Remote Sensing 43(6), 1391–1402 (2005)

    Article  Google Scholar 

  9. Ballester, C., Caselles, V., Igual, L., Verdera, J., Rougé, B.: A variational Model for p+xs Image Fusion. International Journal of Computer Vision 69(1), 43–58 (2006)

    Article  Google Scholar 

  10. Myungjin, C., Rae, Y.K., Myeong, R.N., Hong, O.K.: Fusion of Multispectral and Panchromatic Satellite Images Using the Curvelet Transform. IEEE Transaction on Geoscience and Remote Sensing Letters 2(1), 136–140 (2005)

    Google Scholar 

  11. Chavez, P.S., Sides, S.C., Anderson, J.A.: Comparison of Three Different Methods to Merge Multiresolution and Multispectral Data: Landsat TM & SPOT Panchromatic. Photogrammetric Engineering and Remote Sensing 57(3), 295–303 (1991)

    Google Scholar 

  12. Sheffigara, V.K.: A Generalized Component Substitution Technique for Spatial Enhancement of Multispectral Image Using a High Resolution Data set. Photogrammetric Engineering and Remote Sensing 58(5), 561–567 (1992)

    Google Scholar 

  13. Yocky, D.A.: Image Merging and Data Fusion by Means of the Discrete Two-dimensional Wavelet Transform. J. Opt. Soc. Amer. 12(9), 1834–1841 (1995)

    Article  Google Scholar 

  14. Daubechies, I.: Ten Lecture on Wavelets. Capital City Press, Philadephies (1992)

    Book  MATH  Google Scholar 

  15. Charles, K.C.: An introduction to wavelets. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  16. Jorge, N., Xavier, O., Octavi, F., Albert, P., Vicenc, P., Roman, A.: Multiresolution-Based Image Fusion with Additive Wavelet Decomposition. IEEE Transactions on Geoscience and Remote Sensing 37(3), 1204–1211 (1999)

    Article  Google Scholar 

  17. Kovačević, J., Vetterli, M.: Reconstruction Filter Bank and Wavelet Bases for ℝn. IEEE Trans. on Information Theory 38(2), 533–555 (1992)

    Article  MathSciNet  Google Scholar 

  18. Ayache, A.: Construction of Non-separable Dyadic Compactly Supported Orthonormal Wavelet Bases for L2(ℝ2) of Arbitrarily High Regularity. Revista Mathematica Iberoamericana 15(1), 37–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bin, L., Jiaxiong, P.: Image Fusion Method Based on Non-separable Wavelet. Machine Vision and Applications 16(3), 189–196 (2005)

    Article  Google Scholar 

  20. Bin, L., Jiaxiong, P.: Image Fusion Method Based on Short Support Symmetric Non-separable Wavelet. International Journal of Wavelets, Multiresolution, and Information Processing 2(1), 87–98 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bin, L., Jiaxiong, P.: Multi-spectral Image Fusion Method Based on Two Channels Non-separable Wavelets. Science in China Series F: Information Sciences 51(12), 2022–2032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bin, L., Jiaxiong, P.: Multi-spectral Image Fusion Based on Two Channels Non-separable Additive Wavelets. Acta Optica Sinica 27(8), 1419–1424 (2007) (in Chinese)

    Google Scholar 

  23. Qiuhui, C., Charles, A.M., Silong, P., Yuesheng, X.: Multivariate Filter Banks Having Matrix Factorizations. SIAM J. Matrix Anal. Appl. 25(2), 517–531 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Eskicioglu, A.M., Fisher, P.S.: Image Quality Measure and Their Performance. IEEE Transaction on Communication 43(12), 2959–2965 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, B., Liu, W. (2011). Fusion of Multi-spectral Image Using Non-separable Additive Wavelets for High Spatial Resolution Enhancement. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21593-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21593-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21592-6

  • Online ISBN: 978-3-642-21593-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics