DPLL+ROBDD Derivation Applied to Inversion of Some Cryptographic Functions | SpringerLink
Skip to main content

DPLL+ROBDD Derivation Applied to Inversion of Some Cryptographic Functions

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2011 (SAT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6695))

Abstract

The paper presents logical derivation algorithms that can be applied to inversion of polynomially computable discrete functions. The proposed approach is based on the fact that it is possible to organize DPLL derivation on a small subset of variables appeared in a CNF which encodes the algorithm computing the function. The experimental results showed that arrays of conflict clauses generated by this mode of derivation, as a rule, have efficient ROBDD representations. This fact is the departing point of development of a hybrid DPLL+ROBDD derivation strategy: derivation techniques for ROBDD representations of conflict databases are the same as those ones in common DPLL (variable assignments and unit propagation). In addition, compact ROBDD representations of the conflict databases can be shared effectively in a distributed computing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloul, F.A., Mneimneh, M.N., Sakallah, K.A.: ZBDD-Based Backtrack Search SAT Solver. In: Proceedings of International Workshop on Logic and Synthesis (IWLS), pp. 131–136 (2002)

    Google Scholar 

  2. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech. Rep. 10/1, FMV Reports Series, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2010)

    Google Scholar 

  3. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  4. Chatalic, P., Simon, L.: Zres: The old Davis-Putnam procedure meets ZBDDs. In: McAllester, D. (ed.) CADE 2000. LNCS(LNAI), vol. 1831, pp. 449–454. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Damiano, R.F., Kukula, J.H.: Checking satisfiability of a conjunction of BDDs. In: 40th Design Automation Conference, DAC 2003, pp. 818–823 (2003)

    Google Scholar 

  6. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional horn formulae. The Journal of Logic Programming 1(3), 267–284 (1984)

    Article  MATH  Google Scholar 

  7. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Ganai, M., Gupta, A.: SAT-Based Scalable Formal Verification Solutions. Series on Integrated Circuits and Systems. Springer-Verlag New York, Inc., Secaucus (2007)

    Book  MATH  Google Scholar 

  9. Gopalakrishnan, S., Durairaj, V., Kalla, P.: Integrating CNF and BDD based SAT solvers. In: IEEE International High-Level Design, Validation, and Test Workshop, pp. 51–56 (2003)

    Google Scholar 

  10. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a Parallel SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation, Special Issue on Parallel SAT Solving 6, 245–262 (2009)

    MATH  Google Scholar 

  11. Huang, J., Darwiche, A.: The Language of Search. Journal of Artificial Intelligence Research 29, 191–219 (2007)

    MATH  Google Scholar 

  12. Järvisalo, M., Junttila, T.: Limitations of restricted branching in clause learning. Constraints 14(3), 325–356 (2009)

    Article  MATH  Google Scholar 

  13. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean Reasoning for Equivalence Checking and Functional Property Verification. IEEE Transactions on Computer-Aided Design 21(12), 1377–1394 (2002)

    Article  Google Scholar 

  14. Lee, C.Y.: Representation of Switching Circuits by Binary-Decision Programs. Bell Systems Technical Journal 38, 985–999 (1959)

    Article  Google Scholar 

  15. Lynce, I., Marques-Silva, J.: Efficient data structures for backtrack search SAT solvers. Annals of Mathematics and Artificial Intelligence 43(1), 137–152 (2005)

    Article  MATH  Google Scholar 

  16. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

    Article  Google Scholar 

  17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001, pp. 530–535. ACM, New York (2001)

    Google Scholar 

  18. Schubert, T., Lewis, M., Becker, B.: PaMiraXT: Parallel SAT Solving with Threads and Message Passing. Journal on Satisfiability, Boolean Modeling and Computation, Special Issue on Parallel SAT Solving 6, 203–222 (2009)

    MATH  Google Scholar 

  19. Semenov, A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel algorithms for SAT in application to inversion problems of some discrete functions, arXiv:1102.3563v1 [cs.DC]

    Google Scholar 

  20. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic Problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communication Operations in MPICH. Int’l Journal of High Performance Computing Applications 19(1), 49–66 (2005)

    Article  Google Scholar 

  22. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic 2, 234–259 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ignatiev, A., Semenov, A. (2011). DPLL+ROBDD Derivation Applied to Inversion of Some Cryptographic Functions. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21581-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21580-3

  • Online ISBN: 978-3-642-21581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics