Feature Selection for Multi-label Classification Problems | SpringerLink
Skip to main content

Feature Selection for Multi-label Classification Problems

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6691))

Included in the following conference series:

  • 2689 Accesses

Abstract

This paper proposes the use of mutual information for feature selection in multi-label classification, a surprisingly almost not studied problem. A pruned problem transformation method is first applied, transforming the multi-label problem into a single-label one. A greedy feature selection procedure based on multidimensional mutual information is then conducted. Results on three databases clearly demonstrate the interest of the approach which allows one to sharply reduce the dimension of the problem and to enhance the performance of classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning Multi-Label Scene Classification. Pattern Recogn. 37, 1757–1771 (2004)

    Article  Google Scholar 

  2. Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein Classification with Multiple Algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–459. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multi-Label Classification of Music into Emotions. In: 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia, pp. 325–330 (2008)

    Google Scholar 

  4. Schapire, R.E., Singer, Y.: Boostexter: A Boosting-Based System for Text categorization. Machine Learning 39, 135–168 (2000)

    Article  MATH  Google Scholar 

  5. Elisseeff, A., Weston, J.: A Kernel method for Multi-Labelled Classification. Advances in Neural Information Proceesing Systems 14, 681–687 (2001)

    Google Scholar 

  6. Zhang, M.-L., Zhou, Z.-H.: ML-KNN: A Lazy Learning Approach to Multi-Label Learning. Pattern Recogn. 40, 2038–2048 (2007)

    Article  MATH  Google Scholar 

  7. Read, J.: A Pruned Problem Transformation Mathod for Multi-label Classification. In: New Zealand Computer Science Research Student Conference (NZCSRS 2008), pp. 143–150 (2008)

    Google Scholar 

  8. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J. Mach. Lear. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  9. Shannon, C.E.: A mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  10. Battiti, R.: Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE T. Neural. Networ. 5, 537–550 (1994)

    Article  Google Scholar 

  11. Gomez-Verdejo, V., Verleysen, M., Fleury, J.: Information-Theoretic Feature Selection for Functional Data Classification. Neurocomputing 72, 3580–3589 (2009)

    Article  Google Scholar 

  12. Kozachenko, L.F., Leonenko, N.: Sample Estimate of the Entropy of a Random Vector. Problems Inform. Transmission 23, 95–101 (1987)

    MATH  Google Scholar 

  13. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating Mutual Information. Phys. Rev. E 69, 066138 (2004)

    Article  MathSciNet  Google Scholar 

  14. Parzen, E.: On Estimation of a Probability Density Function and Mode. Ann. Math. Statist. 33, 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benoudjit, N., François, D., Meurens, M., Verleysen, M.: Spectrophotometric Variable Selection by Mutual Information. Chemometr. Intell. Lab. 74, 243–251 (2004)

    Article  Google Scholar 

  16. Francois, D., Rossi, F., Wertz, V., Verleysen, M.: Resampling Methods for Parameter-free and Robust Feature Selection with Mutual Information. Neurocomputing 70, 1276–1288 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doquire, G., Verleysen, M. (2011). Feature Selection for Multi-label Classification Problems. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics