Abstract
In Multi-agent systems, the study of language and communication is an active field of research. In this paper we present the application of Reinforcement Learning (RL) to the self-emergence of a common lexicon in robot teams. By modeling the vocabulary or lexicon of each agent as an association matrix or look-up table that maps the meanings (i.e. the objects encountered by the robots or the states of the environment itself) into symbols or signals we check whether it is possible for the robot team to converge in an autonomous, decentralized way to a common lexicon by means of RL, so that the communication efficiency of the entire robot team is optimal. We have conducted several experiments aimed at testing whether it is possible to converge with RL to an optimal Saussurean Communication System. We have organized our experiments alongside two main lines: first, we have investigated the effect of the team size centered on teams of moderated size in the order of 5 and 10 individuals, typical of multi-robot systems. Second, and foremost, we have also investigated the effect of the lexicon size on the convergence results. To analyze the convergence of the robot team we have defined the team’s consensus when all the robots (i.e. 100% of the population) share the same association matrix or lexicon. As a general conclusion we have shown that RL allows the convergence to lexicon consensus in a population of autonomous agents.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)
Lenaerts, T., Jansen, B., Tuyls, K., De Vylder, B.: The evolutionary language game: An orthogonal approach. J. Theor. Biol. 235, 566–582 (2005)
Lewis, D.K.: Convention. Harvard University Press, Cambridge (1969)
Loula, A., Gudwin, R., El-Hani, C.N., Queiroz, J.: Emergence of self-organized symbol-based communication in artificial cretures. Cognitive Systems Research 11(2), 131–147 (2010)
Maravall, D., de Lope, J., Domínguez, R.: Self-emergence of lexicon consensus in a population of autonomous agents by means of evolutionary strategies. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 77–84. Springer, Heidelberg (2010)
Maravall, D., de Lope, J., Domínguez, R.: Self-emergence of a common lexicon by evolution in teams of autonomous agents. Neurocomputing (in press)
Nowak, M.: The evolutionary language game. J. Theor. Biol. 200, 147–162 (1999)
Peirce, C.S.: Selected Writings. Dover, New York (1966)
de Saussure, F.: Cours de Linguistic Général. Payot, Paris (1916); Ibidem Course on General Linguistics. English Edition. McGraw-Hill, New York (1969)
Steels, L., Kaplan, F.: Bootstrapping grounded word semantics. In: Briscoe, T. (ed.) Linguistic Evolution Through Language Acquisition, pp. 53–73. Cambridge University Press, Cambridge (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maravall, D., de Lope, J., Domínguez, R. (2011). Coordination of Communication in Robot Teams by Reinforcement Learning. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-21344-1_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21343-4
Online ISBN: 978-3-642-21344-1
eBook Packages: Computer ScienceComputer Science (R0)