Well-Quasi-Ordering Hereditarily Finite Sets | SpringerLink
Skip to main content

Well-Quasi-Ordering Hereditarily Finite Sets

  • Conference paper
Language and Automata Theory and Applications (LATA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6638))

  • 691 Accesses

Abstract

Recently, strong immersion was shown to be a well-quasi-order on the class of all tournaments. Hereditarily finite sets can be viewed as digraphs, which are also acyclic and extensional. Although strong immersion between extensional acyclic digraphs is not a well-quasi-order, we introduce two conditions that guarantee this property. We prove that the class of extensional acyclic digraphs corresponding to slim sets (i.e. sets in which every memebership is necessary) of bounded skewness (i.e. sets whose ∈-distance between their elements is bounded) is well-quasi-ordered by strong immersion.

Our results hold for sets of bounded cardinality and it remains open whether they hold in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P., Delzanno, G., Van Begin, L.: A classification of the expressive power of well-structured transition systems. Information and Computation (in Press)

    Google Scholar 

  2. Ackermann, W.: Die Widerspruchfreiheit der allgemeinen Mengenlehre. Mathematische Annalen 114, 305–315 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bang-Jensen, J., Gutin, G.: Digraphs Theory, Algorithms and Applications, 1st edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  4. Bollobás, B.: Combinatorics. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  5. Chudnovsky, M., Seymour, P.D.: A well-quasi-order for tournaments. J. Comb. Theory, Ser. B 101(1), 47–53 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere? Theoretical Computer Science 256(1-2), 63–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 3(2), 326–336 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kruskal, J.B.: Well-quasi ordering, the tree theorem and Vászonyi’s conjecture. Trans. Amer. Math. Soc. 95, 210–225 (1960)

    MathSciNet  MATH  Google Scholar 

  9. Levy, A.: Basic Set Theory. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  10. Nash-Williams, C.S.J.A.: On well-quasi-ordering trees. In: Theory of Graphs and Its Applications (Proc. Symp. Smolenice, 1963), pp. 83–84. Publ. House Czechoslovak Acad. Sci. (1964)

    Google Scholar 

  11. Omodeo, E.G., Policriti, A.: The Bernays-Schönfinkel-Ramsey class for set theory: semidecidability. J. Symb. Log. 75(2), 459–480 (2010)

    Article  MATH  Google Scholar 

  12. Parlamento, F., Policriti, A., Rao, K.: Witnessing Differences Without Redundancies. Proc. of the American Mathematical Society 125(2), 587–594 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robertson, N., Seymour, P.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory, Ser. B 92, 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Robertson, N., Seymour, P.: Graph minors. XXIII. Nash–Williams’s immersion conjecture. J. Combin. Theory, Ser. B 100, 181–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Policriti, A., Tomescu, A.I. (2011). Well-Quasi-Ordering Hereditarily Finite Sets. In: Dediu, AH., Inenaga, S., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2011. Lecture Notes in Computer Science, vol 6638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21254-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21254-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21253-6

  • Online ISBN: 978-3-642-21254-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics