Effectively Reasoning about Infinite Sets in Answer Set Programming | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6565))

  • 868 Accesses

Abstract

In answer set programming (ASP), one does not allow the use of function symbols. Disallowing function symbols avoids the problem of having logic programs which have stable models of excessively high complexity. For example, Marek, Nerode, and Remmel showed that there exist finite predicate logic programs which have stable models but which have no hyperarithmetic stable model. Disallowing function symbols also avoids problems with the occurs check that can lead to wrong answers in logic programs. Of course, by eliminating function symbols, one loses a lot of expressive power in the language. In particular, it is difficult to directly reason about infinite sets in ASP.

Blair, Marek, and Remmel [BMR08] developed an extension of logic programming called set based logic programming. In the theory of set based logic programming, the atoms represent subsets of a fixed universe X and one is allowed to compose the one-step consequence operator with a monotonic idempotent operator (miop) O so as to ensure that the analogue of stable models are always closed under O. We let \(\mathcal{S}_P\) denote the set of fixed points of finite unions of the sets represented by the atoms of P under the miops associated with P. We shall show that if there is a coding scheme which associates to each element \(A \in \mathcal{S}_P\) a code c(A) such that there are effective procedures, which given two codes c(A) and c(B) of elements \(A,B \in \mathcal{S}_P\), will (i) decide if A ⊆ B, (ii) decide if A ∩ B = ∅, and (iii) produce the codes of the closures of A ∪ B and of A ∩ B under the miop operators associated with P, then we can effectively decide whether an element \(A \in \mathcal{S}_P\) is a stable model of P. Thus in such a situation, we can effectively reason about the stable models of P even though \(\mathcal{S}_P\) contains infinite sets. Our basic example is the case where all the sets represented by the atoms of P are regular languages but many other examples are possible such as when the sets involved are certain classes of convex sets in ℝn.

This is an updated and expanded version of [MR09].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K., Blair, H.A.: Arithmetic Classification of Perfect Models of Stratified Programs. Fundamenta Informaticae 13, 1–17 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Babovich, Y., Lifschitz, V.: Cmodels (2002), http://www.cs.utexas.edu/users/tag/cmodels.html

  3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  4. Bar-Hillel, Y., Perles, M.A., Shamir, E.: On formal properties of simple phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung 14, 143–172 (1961)

    MathSciNet  MATH  Google Scholar 

  5. Blair, H.A., Marek, V.W., Remmel, J.B.: Spatial Logic Programming. In: Proceedings SCI 2001, Orlando, FL (July 2001)

    Google Scholar 

  6. Blair, H.A., Marek, V.W., Remmel, J.B.: Set Based Logic Programming. Annals of Mathematics and Artificial Intelligence 52, 81–105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blair, H.A., Marek, V.W., Schlipf, J.S.: The Expressivness of Locally Stratified Programs. Annals of Mathematics and Artificial Intelligence 15, 209–229 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blumensath, A., Grädel, E.: Automatic Structures. In: Proceedings of the 15th Symposium on Logic in Computer Science, LICS 2000, pp. 51–62 (2000)

    Google Scholar 

  9. Denecker, M.: Extending classical logic with inductive definitions. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 703–717. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing satisfiability of propositional Horn formulae. Journal of Logic Programming 3, 267–284 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp – a Conflict-driven Answer Set Solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. Theory and Practice of Logic Programming 3, 519–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – A-Prolog perspective. Artificial Intelligence Journal 138, 3–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the International Joint Conference and Symposium on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  15. Giunchiglia, E., Lierer, Y., Maratea, M.: Answer Set Programming Based on Propositional Satisfiability. Journal of Automated Reasoning 36, 345–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  17. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness and limitations. Logical Methods of Computer Science 3(2), 18(electronic) (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7, 499–562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lifschitz, V.: Minimal belief and negation as failure. Artificial Intelligence Journal 70, 53–72 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), pp. 112–117. AAAI Press, Menlo Park (2002)

    Google Scholar 

  21. Marek, W., Nerode, A., Remmel, J.B.: The stable models of predicate logic programs. Journal of Logic Programming 21(3), 129–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marek, V.W., Remmel, J.B.: Automata and Answer Set Programming. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 323–337. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Marek, W., Truszczyński, M.: Nonmonotonic Logic – Context-Dependent Reasoning. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  24. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm. In: The Logic Programming Paradigm. AI, pp. 375–398. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing stable semantics of logic programs. Artificial Intelligence Journal 138, 181–234 (2002)

    Article  MATH  Google Scholar 

  27. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing Configuration Knowledge with Weight Constraint Rules. In: Answer Set Programming 2001 (2001)

    Google Scholar 

  28. Smullyan, R.: First-order Logic. Springer, Heidelberg (1968)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marek, V., Remmel, J.B. (2011). Effectively Reasoning about Infinite Sets in Answer Set Programming. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20832-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20831-7

  • Online ISBN: 978-3-642-20832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics