Abstract
The class of logic programs covered by the original definition of a stable model has the property that all stable models of a program in this class are minimal. In the course of research on answer set programming, the concept of a stable model was extended to several new programming constructs, and for some of these extensions the minimality property does not hold. We are interested in syntactic conditions on a logic program that guarantee the minimality of its stable models. This question is addressed here in the context of the general theory of stable models of first-order sentences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann, San Mateo (1988)
Bidoit, N., Froidevaux, C.: Minimalism subsumes default logic and circumscription in stratified logic programming. In: Proceedings LICS 1987, pp. 89–97 (1987)
Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 97–102 (2005)
Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription8. Artificial Intelligence 175, 236–263 (2011)
Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)
Gelfond, M.: On stratified autoepistemic theories. In: Proceedings of National Conference on Artificial Intelligence (AAAI), pp. 207–211 (1987)
Kim, T.-W., Lee, J., Palla, R.: Circumscriptive event calculus as answer set programming. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 823–829 (2009)
McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Artificial Intelligence 26(3), 89–116 (1986)
Van Gelder, A., Ross, K., Schlipf, J.: Unfounded sets and well-founded semantics for general logic programs. In: Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Austin, Texas, March 21-23, pp. 221–230. ACM Press, New York (1988)
Van Gelder, A.: Negation as failure using tight derivations for general logic programs. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 149–176. Morgan Kaufmann, San Mateo (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ferraris, P., Lifschitz, V. (2011). On the Minimality of Stable Models. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-20832-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20831-7
Online ISBN: 978-3-642-20832-4
eBook Packages: Computer ScienceComputer Science (R0)