ASP as a Cognitive Modeling Tool: Short-Term Memory and Long-Term Memory | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6565))

Abstract

In this paper we continue our investigation on the viability of Answer Set Programming (ASP) as a tool for formalizing, and reasoning about, psychological models. In the field of psychology, a considerable amount of knowledge is still expressed using only natural language. This lack of a formalization complicates accurate studies, comparisons, and verification of theories. We believe that ASP, a knowledge representation formalism allowing for concise and simple representation of defaults, uncertainty, and evolving domains, can be used successfully for the formalization of psychological knowledge. In previous papers we have shown how ASP can be used to formalize a rather well-established model of Short-Term Memory, and how the resulting encoding can be applied to practical tasks, such as those from the area of human-computer interaction. In this paper we extend the model of Short-Term Memory and introduce the model of a substantial portion of Long-Term Memory, whose formalization is made particularly challenging by the ability to learn proper of this part of the brain. Furthermore, we compare our approach with various established techniques from the area of cognitive modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)

    Article  MATH  Google Scholar 

  2. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  4. Baral, C., Gelfond, M.: Reasoning about Intended Actions. In: Proceedings of the 20th National Conference on Artificial Intelligence, pp. 689–694 (2005)

    Google Scholar 

  5. Son, T.C., Sakama, C.: Negotiation Using Logic Programming with Consistency Restoring Rules. In: 2009 International Joint Conferences on Artificial Intelligence, IJCAI (2009)

    Google Scholar 

  6. McCarley, J.S., Wickens, C.D., Gob, J., Horrey, W.J.: A Computational Model of Attention/Situation Awareness. In: Proceedings of the 46th Annual Meeting of the Human Factors and Ergonomics Society (2002)

    Google Scholar 

  7. Balduccini, M., Girotto, S.: Formalization of Psychological Knowledge in Answer Set Programming and its Application. Journal of Theory and Practice of Logic Programming (TPLP) 10(4-6), 725–740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Formalizing and Compiling Background Knowledge and its Applications to Knowledge Representation and Question Answering. In: AAAI 2006 Spring Symposium Series (2006)

    Google Scholar 

  9. Kassin, S.: Psychology in Modules. Prentice Hall, Englewood Cliffs (2006)

    Google Scholar 

  10. Nevid, J.S.: Psychology: Concepts and Applications, 2nd edn. Houghton Mifflin Company, Boston (2007)

    Google Scholar 

  11. Niemela, I., Simons, P.: Extending the Smodels System with Cardinality and Weight Constraints. In: Logic-Based Artificial Intelligence, pp. 491–521. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  12. Gelfond, M., Lifschitz, V.: Action Languages. Electronic Transactions on AI 3(16) (1998)

    Google Scholar 

  13. Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Balduccini, M., Gelfond, M., Nogueira, M.: A-Prolog as a tool for declarative programming. In: Proceedings of the 12th International Conference on Software Engineering and Knowledge Engineering (SEKE 2000), pp. 63–72 (2000)

    Google Scholar 

  15. Delgrande, J.P., Grote, T., Hunter, A.: A general approach to the verification of cryptographic protocols using answer set programming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 355–367. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Thielscher, M.: Answer Set Programming for Single-Player Games in General Game Playing. In: 10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2009), pp. 327–341 (September 2009)

    Google Scholar 

  17. Atkinson, R.C., Shiffrin, R.M.: The Control of Short-Term Memory. Scientific American 225, 82–90 (1971)

    Article  Google Scholar 

  18. Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Interaction. L. Erlbaum Associates Inc., Mahwah (1983)

    Google Scholar 

  19. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. Psychological Review 63, 81–97 (1956)

    Article  Google Scholar 

  20. Cowan, N.: The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. Behavioral and Brain Sciences 24, 87–185 (2000)

    Article  Google Scholar 

  21. Cooper, R.P., Farringdon, J., Fox, J., Shallice, T.: A Systematic Methodology for Cognitive Modelling. Artificial Intelligence 85, 3–44 (1996)

    Article  Google Scholar 

  22. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138, 39–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Journal of Theory and Practice of Logic Programming (TPLP) 3(4-5), 425–461 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Balduccini, M., Gelfond, M., Nogueira, M.: Answer Set Based Design of Knowledge Systems. Annals of Mathematics and Artificial Intelligence 47(1-2), 183–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An Architecture for General Intelligence. Artificial Intelligence 33, 1–64 (1987)

    Article  Google Scholar 

  26. Baral, C., Dzifcak, J., Takahashi, H.: Macros, Macro Calls and Use of Ensembles in Modular Answer Set Programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 376–390. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive Stable Models. Journal of Artificial Intelligence Research 35, 813–857 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An Integrated Theory of the Mind. Psychological Review 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  29. Halverson, T., Gunzelmann, G., Moore Jr., L.R., Dongen, H.V.: Modeling the Effects of Work Shift on Learning in Mental Orientation and Rotation Task. In: 10th International Conference on Cognitive Modeling (ICCM 2010) (August 2010)

    Google Scholar 

  30. Chintabathina, S., Gelfond, M., Watson, R.: Modeling Hybrid Domains Using Process Description Language. In: Proceedings of ASP 2005 – Answer Set Programming: Advances in Theory and Implementation, pp. 303–317 (2005)

    Google Scholar 

  31. Lee, J., Lifschitz, V.: Additive Fluents. In: Provetti, A., Son, T.C. (eds.) Answer Set Programming: Towards Efficient and Scalable Knowledge Representation and Reasoning. AAAI 2001 Spring Symposium Series (March 2001)

    Google Scholar 

  32. Balduccini, M., Gelfond, M.: The AAA Architecture: An Overview. In: AAAI Spring Symposium 2008 on Architectures for Intelligent Theory-Based Agents, AITA 2008 (March 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balduccini, M., Girotto, S. (2011). ASP as a Cognitive Modeling Tool: Short-Term Memory and Long-Term Memory. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20832-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20831-7

  • Online ISBN: 978-3-642-20832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics