Abstract
Constructive mathematics, mathematics in which the existence of an object means that that we can actually construct this object, started as a heavily restricted version of mathematics, a version in which many commonly used mathematical techniques (like the Law of Excluded Middle) were forbidden to maintain constructivity. Eventually, it turned out that not only constructive mathematics is not a weakened version of the classical one – as it was originally perceived – but that, vice versa, classical mathematics can be viewed as a particular (thus, weaker) case of the constructive one. Crucial results in this direction were obtained by M. Gelfond in the 1970s. In this paper, we mention the history of these results, and show how these results affected constructive mathematics, how they led to new algorithms, and how they affected the current activity in logic programming-related research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aberth, O.: Precise Numerical Analysis Using C++. Academic Press, New York (1998)
Beeson, M.J.: Foundations of Constructive Mathematics. Springer, New York (1985)
Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
Bishop, E., Bridges, D.S.: Constructive Analysis. Springer, New York (1985)
Bridges, D.S.: Constructive Functional Analysis. Pitman, London (1979)
Bridges, D.S., Via, S.L.: Techniques of Constructive Analysis. Springer, New York (2006)
Brouwer, L.E.J.: Over de Grondslagen der Wiskunde, Ph.D. thesis, Universiteit van Amsterdam (1907); in Dutch, English translation in Heyting, A. (ed.), Collected Works of L.E.J. Brouwer. I: Philosophy and Foundations of Mathematics, pp. 11–101. North-Holland, Amsterdam (1975)
Brouwer, L.E.J.: Über die Bedeutung des Satzes vom ausgeschlossenen Dritten in der Mathematik, insbesondere in der Funktionentheorie. Journal für die reine und angewandte Mathematik 154, 1–7 (1924) (in German); English translation: On the significance of the principle of excluded middle in mathematics, especially in function theory. In: van Heijenoort, J. (ed.), A Source Book in Mathematical Logic, 1879-1931, From Frege to Gödel, pp. 334–345. Harvard University Press, Cambridge (1967)
Busemann, H.: The Geometry of Geodesics. Dover Publ., New York (2005)
Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New York (1997)
Gel’fond, M.G.: On constructive pseudofunctions. Proceedings of the Leningrad Mathematical Institute of the Academy of Sciences 16, 20–27 (1969) (in Russian); English translation in: Seminars in Mathematics Published by Consultants Bureau (New York-London) 16, 7–10 (1971)
Gel’fond, M.G.: Relationship between the classical and constructive developments of mathematical analysis. Proceedings of the Leningrad Mathematical Institute of the Academy of Sciences 32, 5–11 (1972) (in Russian); English translation in Journal of Soviet Mathematics 6(4), 347–352 (1976).
Gelfond, M.G.: Classes of formulas of classical analysis which are consistent with the constructive interpretation, PhD Dissertation, Leningrad Mathematical Institute of the Academy of Sciences (1975) (in Russian)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference on Logic Programming ICLP, pp. 1070–1080 (1988)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)
Hilbert, D.: Zur Theorie der algebraischen Gebilde. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg- Augusts-Universität zu Göttingen, 450–457 (1988); 25–34, 423–430 (1889) (in German)
Hilbert, D.: Über die Theorie der algebraischen Formen. Mathematische Annalen 36, 473–534 (1890) (in German)
Hilbert, D.: Über die theorie der algebraischen invarianten. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg- Augusts-Universität zu Göttingen, 232–241 (1891); 6–16, 439–448 (1892) (in German)
Hilbert, D.: Über die vollen Invariantensysteme. Mathematische Annalen 42, 313–370 (1893) (in German)
Hilbert, D.: Theory of Algebraic Invariants. Cambrdige University Press, Cambridge (1993) (Lecture Notes from 1897)
Kohlenbach, U.: Theorie der majorisierbaren und stetigen Funktionale und ihre Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Effektive Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Eindeutigkeitsbeweisen, Ph.D. Dissertation, Frankfurt am Main (1990) (in German)
Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin’s proof for Chebycheff approximation. Annals for Pure and Applied Logic 64(1), 27–94 (1993)
Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer, Heidelberg (2008)
Kolmogorov, A.N.: O printsipe tertium non datur. Matematicheskij Sbornik 32, 646–667 (1925) (in Russian); English translation: On the principle of excluded middle. In: A Source Book in Mathematical Logic, 1879-1931, van Heijenoort, J. (ed.), From Frege to Gödel, pp. 414–437. Harvard University Press, Cambridge (1967)
Kreinovich, V.: Uniqueness implies algorithmic computability. In: Proceedings of the 4th Student Mathematical Conference, pp. 19–21. Leningrad University, Leningrad (1975) (in Russian)
Kreinovich, V.: Reviewer’s remarks in a review of Bridges. In: D.S.: Constrictive Functional Analysis. Pitman, London (1979); Zentralblatt für Mathematik 401, 22–24 (1979)
Kreinovich, V.: Categories of space-time models, Ph.D. dissertation, Novosibirsk, Soviet Academy of Sciences, Siberian Branch, Institute of Mathematics (1979) (in Russian)
Kreinovich, V.: Physics-motivated ideas for extracting efficient bounds (and algorithms) from classical proofs: beyond local compactness, beyond uniqueness. In: Abstracts of the Conference on the Methods of Proof Theory in Mathematics, Max-Planck Institut für Mathematik, Bonn, Germany, June 3-10, p. 8 (2007)
Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and feasibility of data processing and interval computations. Kluwer, Dordrecht (1998)
Kushner, B.A.: Lectures on Constructive Mathematical Analysis. Amer. Math. Soc., Providence (1984)
Lacombe, D.: Les ensembles récursivement ouvert ou fermés, et leurs applications à l’analyse récurslve. Compt. Rend. 245(13), 1040–1043 (1957)
Lifschitz, V.A.: Investigation of constructive functions by the method of fillings. J. Soviet Math. 1, 41–47 (1973)
Noether, M.: Paul Gordan. Mathematisce Annalen 75, 1–41 (1914)
Pour-El, M., Richards, J.: Computability in Analysis and Physics. Springer, New York (1989)
Weyl, H.: Das Kontinuum. Veyt, Leipzig (1918) (in German); English translation: The Continuum: A Critical Examination of the Foundation of Analysis. Dover Publ., New York (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kreinovich, V. (2011). Cantor’s Paradise Regained: Constructive Mathematics from Brouwer to Kolmogorov to Gelfond. In: Balduccini, M., Son, T.C. (eds) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. Lecture Notes in Computer Science(), vol 6565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20832-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-20832-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20831-7
Online ISBN: 978-3-642-20832-4
eBook Packages: Computer ScienceComputer Science (R0)