Set Covering with Ordered Replacement: Additive and Multiplicative Gaps | SpringerLink
Skip to main content

Set Covering with Ordered Replacement: Additive and Multiplicative Gaps

  • Conference paper
Integer Programming and Combinatoral Optimization (IPCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6655))

  • 1558 Accesses

Abstract

We consider set covering problems where the underlying set system satisfies a particular replacement property w.r.t. a given partial order on the elements: Whenever a set is in the set system then a set stemming from it via the replacement of an element by a smaller element is also in the set system.

Many variants of Bin Packing that have appeared in the literature are such set covering problems with ordered replacement. We provide a rigorous account on the additive and multiplicative integrality gap and approximability of set covering with replacement. In particular we provide a polylogarithmic upper bound on the additive integrality gap that also yields a polynomial time additive approximation algorithm if the linear programming relaxation can be efficiently solved.

We furthermore present an extensive list of covering problems that fall into our framework and consequently have polylogarithmic additive gaps as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caprara, A., Kellerer, H., Pferschy, U.: Approximation schemes for ordered vector packing problems. Naval Research Logistics 50, 58–69 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Das, A., Mathieu, C., Mozes, S.: The train delivery problem- vehicle routing meets bin packing (2010)

    Google Scholar 

  4. Eisenbrand, F., Pálvölgyi, D., Rothvoß, T.: Bin packing via discrepancy of permutations. In: Symposium on Discrete Algorithms, SODA 2011. SIAM, Philadelphia (2011)

    Google Scholar 

  5. Epstein, L., Levin, A.: An APTAS for generalized cost variable-sized bin packing. SIAM Journal on Computing, 38(1) (2008)

    Google Scholar 

  6. Epstein, L., Levin, A.: Asymptotic fully polynomial approximation schemes for variants of open-end bin packing. Inf. Process. Lett. 109(1), 32–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Epstein, L., Levin, A.: AFPTAS results for common variants of bin packing: A new method to handle the small items. SIAM Journal on Optimization (2010) (to appear)

    Google Scholar 

  8. Epstein, L., Levin, A.: Bin packing with general cost structures. Mathematical Programming (2010) (to appear)

    Google Scholar 

  9. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combinatorica 1(4), 349–355 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  12. Kahn, J.: Asymptotics of the chromatic index for multigraphs. Journal of Combinatorial Theory. Series B 68(2), 233–254 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: 23rd annual symposium on foundations of computer science (Chicago, Ill., 1982), pp. 312–320. IEEE, New York (1982)

    Chapter  Google Scholar 

  14. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13(4), 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitzenmacher, M., Upfal, E.: Probability and computing. Cambridge University Press, Cambridge (2005); Randomized algorithms and probabilistic analysis

    Book  MATH  Google Scholar 

  16. Plantholt, M.: A sublinear bound on the chromatic index of multigraphs. Discrete Mathematics 202(1-3), 201–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rothvoß, T.: The entropy rounding method in approximation algorithms (2010) (submitted)

    Google Scholar 

  18. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  19. Woeginger, G.J.: There is no asymptotic PTAS for two-dimensional vector packing. Information Processing Letters 64(6), 293–297 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenbrand, F., Kakimura, N., Rothvoß, T., Sanità, L. (2011). Set Covering with Ordered Replacement: Additive and Multiplicative Gaps. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics