Characterization of the Relations between Information-Theoretic Non-malleability, Secrecy, and Authenticity | SpringerLink
Skip to main content

Characterization of the Relations between Information-Theoretic Non-malleability, Secrecy, and Authenticity

  • Conference paper
Information Theoretic Security (ICITS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6673))

Included in the following conference series:

Abstract

Roughly speaking, an encryption scheme is said to be non-malleable, if no adversary can modify a ciphertext so that the resulting message is meaningfully related to the original message. We compare this notion of security to secrecy and authenticity, and provide a complete characterization of their relative strengths. In particular, we show that information-theoretic perfect non-malleability is equivalent to perfect secrecy of two different messages. This implies that for n-bit messages a shared secret key of length roughly 2n is necessary to achieve non-malleability, which meets the previously known upper bound. We define approximate non-malleability by relaxing the security conditions and only requiring non-malleability to hold with high probability (over the choice of secret key), and show that any authentication scheme implies approximate non-malleability. Since authentication is possible with a shared secret key of length roughly logn, the same applies to approximate non-malleability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions, and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999), full version available at http://eprint.iacr.org/2006/228

    Chapter  Google Scholar 

  3. Bierbrauer, J., Johansson, T., Kabatianskii, G.A., Smeets, B.J.M.: On families of hash functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  4. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2000); a preliminary version appeared at STOC 1991

    Article  MathSciNet  MATH  Google Scholar 

  5. Hanaoka, G.: Some information theoretic arguments for encryption: Non-malleability and chosen-ciphertext security (invited talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 223–231. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Hanaoka, G., Hanaoka, Y., Hagiwara, M., Watanabe, H., Imai, H.: Unconditionally secure chaffing-and-winnowing: A relationship between encryption and authentication. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 154–162. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Hanaoka, G., Shikata, J., Hanaoka, Y., Imai, H.: Unconditionally secure anonymous encryption and group authentication. The Computer Journal 49(3), 310–321 (2006); a preliminary version appeared at Asiacrypt 2002

    Article  MATH  Google Scholar 

  8. Katz, J., Yung, M.: Characterization of security notions for probabilistic private-key encryption. Journal of Cryptology 19(1), 67–95 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kawachi, A., Portmann, C., Tanaka, K.: Characterization of the relations between information-theoretic non-malleability, secrecy, and authenticity. Cryptology ePrint Archive, Report 2011/092 (2011); full version of the current paper, http://eprint.iacr.org/2011/092

  10. McAven, L., Safavi-Naini, R., Yung, M.: Unconditionally secure encryption under strong attacks. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 427–439. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryption scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-malleability for encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 519–535. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Portmann, C., Tanaka, K.: Information-theoretic secrecy with access to decryption oracles. To appear in IEICE Transactions A, Fundamentals of Electronics, Communications and Computer Sciences (2011)

    Google Scholar 

  14. Shannon, C.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stinson, D.R.: Universal hashing and authentication codes. Designs, Codes and Cryptography 4(3), 369–380 (1994); a preliminary version appeared at CRYPTO 1991

    Article  MathSciNet  MATH  Google Scholar 

  16. Stinson, D.R.: On the connections between universal hashing, combinatorial designs and error-correcting codes. Proceedings of Congressus Numerantium 114, 7–27 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Stinson, D.R.: Cryptography: Theory and Practice, 2 edn. Chapman & Hall/CRC (2002)

    Google Scholar 

  18. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawachi, A., Portmann, C., Tanaka, K. (2011). Characterization of the Relations between Information-Theoretic Non-malleability, Secrecy, and Authenticity. In: Fehr, S. (eds) Information Theoretic Security. ICITS 2011. Lecture Notes in Computer Science, vol 6673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20728-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20728-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20727-3

  • Online ISBN: 978-3-642-20728-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics