Abstract
Incremental learning has recently received broad attention in many applications of pattern recognition and data mining. With many typical incremental learning situations in the real world where a fast response to changing data is necessary, developing a parallel implementation (in fast processing units) will give great impact to many applications. Current research on incremental learning methods employs a modified version of a resource allocating network (RAN) which is one variation of a radial basis function network (RBFN). This paper evaluates the impact of a Graphics Processing Units (GPU) based implementation of a RAN network incorporating Long Term Memory (LTM) [4]. The incremental learning algorithm is compared with the batch RBF approach in terms of accuracy and computational cost, both in sequential and GPU implementations. The UCI machine learning benchmark datasets and a real world problem of multimedia forgery detection were considered in the experiments. The preliminary evaluation shows that although the creation of the model is faster with the RBF algorithm, the RAN-LTM can be useful in environments with the need of fast changing models and high-dimensional data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Carpenter, G.A., Grossberg, S.: The ART of Adaptive pattern recognition by a self-organizing neural newtoek. IEEE Computer 21, 77–88 (1988)
Liu, Q., Sung, A.H., Qiao, M.: Temporal derivative-based spectrum and mel-cepstrum audio steganalysis. IEEE Transactions on Information Security 4(3), 359–368 (2009)
Okamoto, K., Ozawa, S., Abe, S.: A fast incremental learning algorithm of RBF networks with long-term memory. In: IJCNN 2003: Proc. of the International Joint Conference on Neural Networks, vol. 1, pp. 102–107. IEEE Computer Society, Los Alamitos (2003)
Platt, J.: A resource-allocating network for function interpolation. Neural Computation 3(2), 213–225 (1991)
Tabuchi, T., Ozawa, S., Roy, A.: An autonomous learning algorithm of resource allocating network. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 134–141. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ribeiro, B., Quintas, R., Lopes, N. (2011). Evaluation of a Resource Allocating Network with Long Term Memory Using GPU. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-20267-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20266-7
Online ISBN: 978-3-642-20267-4
eBook Packages: Computer ScienceComputer Science (R0)