Learning Readers’ News Preferences with Support Vector Machines | SpringerLink
Skip to main content

Learning Readers’ News Preferences with Support Vector Machines

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

We explore the problem of learning and predicting popularity of articles from online news media. The only available information we exploit is the textual content of the articles and the information whether they became popular – by users clicking on them – or not. First we show that this problem cannot be solved satisfactorily in a naive way by modelling it as a binary classification problem. Next, we cast this problem as a ranking task of pairs of popular and non-popular articles and show that this approach can reach accuracy of up to 76%. Finally we show that prediction performance can improve if more content-based features are used. For all experiments, Support Vector Machines approaches are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fürnkranz, J., Hüllermeier, E.: Preference learning: An introduction. In: Preference Learning. Springer, Heidelberg (2010)

    Google Scholar 

  2. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 133–142. ACM, New York (2002)

    Chapter  Google Scholar 

  3. Joachims, T., Radlinski, F.: Search engines that learn from implicit feedback. IEEE Computer 40(8), 34–40 (2007)

    Article  Google Scholar 

  4. Jiang, X., Hu, Y., Li, H.: A ranking approach to keyphrase extraction. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009), pp. 756–757. ACM, New York (2009)

    Google Scholar 

  5. Center, P.R.: When technology makes headlines: The media’s double vision about the digital age. Technical report, Pew Research Center’s Project for Excellence in Journalism (2010)

    Google Scholar 

  6. Gans, H.J.: Deciding What’s News: A Study of CBS Evening News, NBC Nightly News, Newsweek, and Time, 25th anniversary edn. Northwestern University Press (2004)

    Google Scholar 

  7. Steinberger, R., Pouliquen, B., Van der Goot, E.: An introduction to the europe media monitor family of applications. In: Information Access in a Multilingual World - Proceedings of the SIGIR 2009 Workshop (SIGIR-CLIR 2009), pp. 1–8 (2009)

    Google Scholar 

  8. Bautin, M., Ward, C., Patil, A., Skiena, S.: Access: News and blog analsysis for the social sciences. In: Proceedings of the 19th International Conference on World Wide Web (WWW), pp. 1229–1232 (2010)

    Google Scholar 

  9. Flaounas, I., Turchi, M., Ali, O., Fyson, N., De Bie, T., Mosdell, N., Lewis, J., Cristianini, N.: The structure of EU mediasphere. PLoS ONE 5, e14243 (2010)

    Article  Google Scholar 

  10. Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: Proceedings of the 2010 International Conference on Intelligent User Interfaces (IUI), pp. 31–40 (2010)

    Google Scholar 

  11. Wu, F., Huberman, B.A.: Popularity, novelty and attention. In: Proceedings 9th ACM Conference on Electronic Commerce (EC 2008), pp. 240–245 (2008)

    Google Scholar 

  12. Szabó, G., Huberman, B.A.: Predicting the popularity of online content. Commun. ACM 53(8), 80–88 (2010)

    Article  Google Scholar 

  13. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 42–49. ACM Press, New York (1999)

    Google Scholar 

  14. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  15. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms and representation for text categorization. In: 7th International Conference on Information and Knowledge Management (CIKM), pp. 148–155 (1998)

    Google Scholar 

  16. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  17. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer, Dordrecht (2002)

    Book  Google Scholar 

  18. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Conference on Computational Learning Theory (COLT), pp. 144–152 (1992)

    Google Scholar 

  19. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge Mass (2002)

    MATH  Google Scholar 

  21. Turchi, M., Flaounas, I., Ali, O., De Bie, T., Snowsill, T., Cristianini, N.: Found in translation. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5782, pp. 746–749. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)

    Article  Google Scholar 

  23. Liu, B.: Web Data Mining, Exploring Hyperlinks, Contents, and Usage Data. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  24. Joachims, T.: Making large-scale svm learning practical. In: Advances in Kernel Methods: Support Vector Learning, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  25. Flaounas, I.N., Turchi, M., Cristianini, N.: Detecting macro-patterns in the european mediasphere. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and International Conference on Intelligent Agent Technology - Workshops, pp. 527–530 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hensinger, E., Flaounas, I., Cristianini, N. (2011). Learning Readers’ News Preferences with Support Vector Machines. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics