A General Method for Visualizing and Explaining Black-Box Regression Models | SpringerLink
Skip to main content

A General Method for Visualizing and Explaining Black-Box Regression Models

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

We propose a method for explaining regression models and their predictions for individual instances. The method successfully reveals how individual features influence the model and can be used with any type of regression model in a uniform way. We used different types of models and data sets to demonstrate that the method is a useful tool for explaining, comparing, and identifying errors in regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1), 1–3 (2009)

    Article  Google Scholar 

  2. I-Cheng, Y.: Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research 28(12), 1797–1808 (1998)

    Article  Google Scholar 

  3. Jakulin, A., Možina, M., Demšar, J., Bratko, I., Zupan, B.: Nomograms for visualizing support vector machines. In: KDD 2005: ACM SIGKDD, pp. 108–117 (2005)

    Google Scholar 

  4. Lemaire, V., Fraud, R., Voisine, N.: Contact personalization using a score understanding method. In: IJCNN 2008 (2008)

    Google Scholar 

  5. Možina, M., Demšar, J., Kattan, M., Zupan, B.: Nomograms for visualization of naive bayesian classifier. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 337–348. Springer, Heidelberg (2004)

    Google Scholar 

  6. Poulet, F.: Svm and graphical algorithms: A cooperative approach. In: 4th IEEE ICDM, pp. 499–502 (2004)

    Google Scholar 

  7. Robnik-Šikonja, M., Kononenko, I.: Explaining classifications for individual instances. IEEE TKDE 20, 589–600 (2008)

    Google Scholar 

  8. Štrumbelj, E., Kononenko, I.: An efficient explanation of individual classifications using game theory. Journal of Machine Learning Research 11, 1–18 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Zien, A., Krämer, N., Sonnenburg, S., Rätsch, G.: The feature importance ranking measure. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5782, pp. 694–709. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Štrumbelj, E., Kononenko, I. (2011). A General Method for Visualizing and Explaining Black-Box Regression Models. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics