Efficient Predictive Control and Set–Point Optimization Based on a Single Fuzzy Model | SpringerLink
Skip to main content

Efficient Predictive Control and Set–Point Optimization Based on a Single Fuzzy Model

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

  • 1714 Accesses

Abstract

The idea proposed in the paper consists in significant simplification of the control structure with a predictive control algorithm and a steady–state target optimization. It is done by application of only one fuzzy (nonlinear) dynamic control plant model for both: predictive control and set–point calculation. The approach exploits possibilities offered by a fuzzy model used by the predictive control algorithm. The fuzzy model is of Takagi–Sugeno type with step responses used as the local models. Such a model can be obtained relatively easy and well tuned using neural networks. The proposed approach, despite simplification of the control system, offers very good control performance. It is demonstrated using an example of a control system of a nonlinear chemical reactor with inverse response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blevins, T.L., McMillan, G.K., Wojsznis, W.K., Brown, M.W.: Advanced Control Unleashed. ISA (2003)

    Google Scholar 

  2. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  3. Doyle, F., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model–based control using second–order Volterra models. Automatica 31, 697–714 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kassmann, D.E., Badgwell, T.A., Hawkins, R.B.: Robust Steady-State Target Calculation for Model Predictive Control. AIChE Journal 46, 1007–1024 (2000)

    Article  Google Scholar 

  5. Lawrynczuk, M., Marusak, P., Tatjewski, P.: Cooperation of model predictive control with steady–state economic optimisation. Control and Cybernetics 37, 133–158 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Maciejowski, J.M.: Predictive control with constraints. Prentice Hall, Harlow (2002)

    MATH  Google Scholar 

  7. Marusak, P., Tatjewski, P.: Actuator fault tolerance in control systems with predictive constrained set-point optimizers. International Journal of Applied Mathematics and Computer Science 18, 539–551 (2008)

    Article  MATH  Google Scholar 

  8. Marusak, P.: Advantages of an easy to design fuzzy predictive algorithm in control systems of nonlinear chemical reactors. Applied Soft Computing 9, 1111–1125 (2009)

    Article  Google Scholar 

  9. Marusak, P., Tatjewski, P.: Effective dual–mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability. International Journal of Applied Mathematics and Computer Science 19, 127–141 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marusak, P.: Efficient model predictive control algorithm with fuzzy approximations of nonlinear models. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 448–457. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Computers and Chemical Engineering 23, 667–682 (1999)

    Article  Google Scholar 

  12. Qin, S.J., Badgwell, T.: A survey of industrial model predictive control technology. Control Engineering Practice 11, 733–764 (2003)

    Article  Google Scholar 

  13. Piegat, A.: Fuzzy modelling and control. Physica-Verlag, Heidelberg (2001)

    Book  MATH  Google Scholar 

  14. Rossiter, J.A.: Model–Based Predictive Control. CRC Press, Boca Raton (2003)

    Google Scholar 

  15. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man and Cybernetics 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  16. Saez, D., Cipriano, A., Ordys, A.W.: Optimisation of Industrial Processes at Supervisory Level: Application to Control of Thermal Power Plants. Springer, London (2002)

    Book  Google Scholar 

  17. Tatjewski, P.: Advanced Control of Industrial Processes; Structures and Algorithms. Springer, London (2007)

    MATH  Google Scholar 

  18. Tatjewski, P.: Supervisory predictive control and on–line set–point optimization. International Journal of Applied Mathematics and Computer Science 20, 483–495 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zanin, A., Tvrzska de Gouvea, M., Odloak, D.: Industrial implementation of a real–time optimization strategy for maximizing production of LPG in a FCC unit. Computers and Chemical Engineering 24, 525–531 (2000)

    Article  Google Scholar 

  20. Zanin, A., Tvrzska de Gouvea, M., Odloak, D.: Integrating real–time optimization into model predictive controller of the FCC system. Computers and Chemical Engineering 10, 819–831 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marusak, P.M. (2011). Efficient Predictive Control and Set–Point Optimization Based on a Single Fuzzy Model. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics