The Noise Identification Method Based on Divergence Analysis in Ensemble Methods Context | SpringerLink
Skip to main content

The Noise Identification Method Based on Divergence Analysis in Ensemble Methods Context

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

In this paper we propose a divergence based method for noise detection in ensemble method context where the prediction results from different models are treated as a multidimensional variable that contains constructive and destructive latent components. The crucial stage is the proper destructive and constructive components classification. We propose to calculate the noisiness of the particular latent component as the divergence from chosen reference noise. It allows us to identify the wide range of noises besides the typical signals with close analytical form such as Gaussian or uniform. The real data experiment with load energy prediction confirms presented methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bollerslev, T., Chou, R.Y., Kroner, K.: ARCH Modeling in Finance. Journal of Econometrics 52, 5–59 (1992)

    Article  MATH  Google Scholar 

  2. Box, G.E.P., Muller, M.E., Jenkins, G.M.: Time Series Analysis Forecasting and Control, 2nd edn. Holden Day, San Francisco (1976)

    MATH  Google Scholar 

  3. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Book  Google Scholar 

  5. Cichocki, A., Zdunek, R., Phan, A.-H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis. John Wiley, Chichester (2009)

    Book  Google Scholar 

  6. Hamilton, J.D.: Time series analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  7. Haykin, S.: Adaptive filter theory, 3rd edn. Prentice-Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  8. Hoeting, J., Mdigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, Chichester (2001)

    Book  Google Scholar 

  10. MacDonough, R.N., Whalen, A.D.: Detection of signals in noise, 2nd edn. Academic Press, San Diego (1995)

    Google Scholar 

  11. Mandelbrot, B.: Multifractals and 1/f noise. Springer, Heidelberg (1997)

    Google Scholar 

  12. Nikias, C.L., Shao, M.: Signal Processing with Alpha-Stable Distributions and Applications. John Wiley and Son, Chichester (1995)

    Google Scholar 

  13. Peters, E.: Fractal market analysis. John Wiley and Son, Chichester (1996)

    Google Scholar 

  14. Popper, K.R.: The Logic of Scientific Discovery. Hutchinson, London (1959)

    MATH  Google Scholar 

  15. Samorodnitskij, G., Taqqu, M.S.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, N.York (1994)

    Google Scholar 

  16. Shiryaev, A.N.: Essentials of stochastic finance: facts, models, theory. World Scientific, Singapore (1999)

    Book  Google Scholar 

  17. Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Prediction improvement via smooth component analysis and neural network mixing. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 133–140. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey (1992)

    MATH  Google Scholar 

  19. Vaseghi, S.V.: Advanced signal processing and digital noise reduction. John Wiley and Sons, Stuttgart, Chichester (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Wojewnik, P., Zabkowski, T. (2011). The Noise Identification Method Based on Divergence Analysis in Ensemble Methods Context. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics