Abstract
In this paper we propose a divergence based method for noise detection in ensemble method context where the prediction results from different models are treated as a multidimensional variable that contains constructive and destructive latent components. The crucial stage is the proper destructive and constructive components classification. We propose to calculate the noisiness of the particular latent component as the divergence from chosen reference noise. It allows us to identify the wide range of noises besides the typical signals with close analytical form such as Gaussian or uniform. The real data experiment with load energy prediction confirms presented methodology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bollerslev, T., Chou, R.Y., Kroner, K.: ARCH Modeling in Finance. Journal of Econometrics 52, 5–59 (1992)
Box, G.E.P., Muller, M.E., Jenkins, G.M.: Time Series Analysis Forecasting and Control, 2nd edn. Holden Day, San Francisco (1976)
Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)
Cichocki, A., Zdunek, R., Phan, A.-H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis. John Wiley, Chichester (2009)
Hamilton, J.D.: Time series analysis. Princeton University Press, Princeton (1994)
Haykin, S.: Adaptive filter theory, 3rd edn. Prentice-Hall, Upper Saddle River (1996)
Hoeting, J., Mdigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)
Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, Chichester (2001)
MacDonough, R.N., Whalen, A.D.: Detection of signals in noise, 2nd edn. Academic Press, San Diego (1995)
Mandelbrot, B.: Multifractals and 1/f noise. Springer, Heidelberg (1997)
Nikias, C.L., Shao, M.: Signal Processing with Alpha-Stable Distributions and Applications. John Wiley and Son, Chichester (1995)
Peters, E.: Fractal market analysis. John Wiley and Son, Chichester (1996)
Popper, K.R.: The Logic of Scientific Discovery. Hutchinson, London (1959)
Samorodnitskij, G., Taqqu, M.S.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, N.York (1994)
Shiryaev, A.N.: Essentials of stochastic finance: facts, models, theory. World Scientific, Singapore (1999)
Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Prediction improvement via smooth component analysis and neural network mixing. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 133–140. Springer, Heidelberg (2006)
Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey (1992)
Vaseghi, S.V.: Advanced signal processing and digital noise reduction. John Wiley and Sons, Stuttgart, Chichester (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szupiluk, R., Wojewnik, P., Zabkowski, T. (2011). The Noise Identification Method Based on Divergence Analysis in Ensemble Methods Context. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-20267-4_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20266-7
Online ISBN: 978-3-642-20267-4
eBook Packages: Computer ScienceComputer Science (R0)