Online Adaptation of Path Formation in UAV Search-and-Identify Missions | SpringerLink
Skip to main content

Online Adaptation of Path Formation in UAV Search-and-Identify Missions

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

In this paper, we propose a technique for optimisation and online adaptation of search paths of unmanned aerial vehicles (UAVs) in search-and-identify missions. In these missions, a UAV has the objective to search for targets and to identify those. We extend earlier work that was restricted to offline generation of search paths by enabling the UAVs to adapt the search path online (i.e., at runtime). We let the UAV start with a pre-planned search path, generated by a Particle Swarm Optimiser, and adapt it at runtime based on expected value of information that can be acquired in the remainder of the mission. We show experimental results from 3 different types of UAV agents: two benchmark agents (one without any online adaptation that we call ‘naive’ and one with predefined online behaviour that we call ‘exhaustive’) and one with adaptive online behaviour, that we call ‘adaptive’. Our results show that the adaptive UAV agent outperforms both the benchmarks, in terms of jointly optimising the search and identify objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allaire, F.C.J., Tarbouchi, M., Labonte, G., Fusina, G.: Fpga implementation of genetic algorithm for uav real-time path planning. Intelligent Robot Systems 54, 495–510 (2009)

    Article  Google Scholar 

  2. Berger, J., Happe, J., Gagne, C., Lau, M.: Co-evolutionary information gathering for a cooperative unmanned aerial vehicle team. In: 12th International Conference on Information Fusion, FUSION 2009, pp. 347–354 (2009)

    Google Scholar 

  3. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceeding of IEEE International Conference on Neural Networks, vol. 4 (1995)

    Google Scholar 

  4. Kester, L.J.M.H.: Designing networked adaptive interactive hybrid systems. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, August 20-22, pp. 516–521 (2008)

    Google Scholar 

  5. Legras, F., Glad, A., Simonin, O., Charpillet, F.: Authority Sharing in a Swarm of UAVs: Simulation and Experiments with Operators. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 293–304. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Pitre, R.R., Li, X.R., DelBalzo, D.: A new performance metric for search and track missions 2: Design and application to UAV search. In: Proceedings of the 12th International Conference on Information Fusion, pp. 1108–1114 (2009)

    Google Scholar 

  7. Sauter, J.A., Matthews, R., Van Dyke Parunak, H., Brueckner, S.A.: Performance of digital pheromones for swarming vehicle control. In: AAMAS 2005: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 903–910. ACM, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Willigen, W.H., Schut, M.C., Eiben, A.E., Kester, L.J.H.M. (2011). Online Adaptation of Path Formation in UAV Search-and-Identify Missions. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics