A New N-gram Feature Extraction-Selection Method for Malicious Code | SpringerLink
Skip to main content

A New N-gram Feature Extraction-Selection Method for Malicious Code

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6594))

Included in the following conference series:

Abstract

N-grams are the basic features commonly used in sequence-based malicious code detection methods in computer virology research. The empirical results from previous works suggest that, while short length n-grams are easier to extract, the characteristics of the underlying executables are better represented in lengthier n-grams. However, by increasing the length of an n-gram, the feature space grows in an exponential manner and much space and computational resources are demanded. And therefore, feature selection has turned to be the most challenging step in establishing an accurate detection system based on byte n-grams. In this paper we propose an efficient feature extraction method where in order to gain more information; both adjacent and non-adjacent bi-grams are used. Additionally, we present a novel boosting feature selection method based on genetic algorithm. Our experimental results indicate that the proposed detection system detects virus programs far more accurately than the best earlier known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mitchell, T.: Machine Learning. Prentice Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  2. Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data mining methods for detection of new malicious executables. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 38–49 (2001)

    Google Scholar 

  3. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: Detection of new malicious code using n-grams signatures. In: PST, pp. 193–196 (2004)

    Google Scholar 

  4. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Fisher, D.H. (ed.) Proceedings of ICML 1997, 14th International Conference on Machine Learning, Nashville, pp. 412–420 (1997)

    Google Scholar 

  5. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 470–478 (2004)

    Google Scholar 

  6. Cohen, F.: Computer Viruses - Theory and Experiments. IFIP-TC11 Computers and Security 6, 22–35 (1987)

    Article  Google Scholar 

  7. Reddy, D.K.S., Pujari, A.K.: N-gram analysis for computer virus detection. Journal in Computer Virology 2(3), 231–239 (2006)

    Article  Google Scholar 

  8. Morin, B., Mé, L.: Intrusion detection and virology: an analysis of differences, similarities and complementariness. Journal of Computer Virology, vol 3, 39–49 (2007)

    Article  Google Scholar 

  9. Filiol, E.: Computer viruses: from theory to applications. Springer, New York (2005)

    MATH  Google Scholar 

  10. Adleman, L.M.: An Abstract Theory of Computer Viruses. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 354–374. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  11. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. The Journal of Machine Learning Research 7, 2721–2744 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Minaei-Bidgoli, B., Kortemeyer, G., Punch, W.F.: Optimizing Classification Ensembles via a Genetic Algorithm for a Web-Based Educational System. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 397–406. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3), 801–823 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. http://vx.netlux.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parvin, H., Minaei, B., Karshenas, H., Beigi, A. (2011). A New N-gram Feature Extraction-Selection Method for Malicious Code. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20267-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20267-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20266-7

  • Online ISBN: 978-3-642-20267-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics