Non-intrusive Residential Electrical Consumption Traces | SpringerLink
Skip to main content

Non-intrusive Residential Electrical Consumption Traces

  • Conference paper
Ambient Intelligence - Software and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 92))

Abstract

An active trend of research consists of understanding how electricity is used, namely for energy efficiency enforcement and in-home activity tracking. The obvious and cheapest solution is to use an inconspicuous monitoring system. Through the use of non-intrusive load monitoring systems, the signal from the aggregate consumption is captured, electrical significant features are extracted and classified and the appliances that were consuming are identified. In order to obtain a precise identification of the device, the main requirements are an electrical signature for each device and a proper classification method. The information thus obtained identifies appliance’s usage and specific consumptions. This paper describes an on-going research aiming at the development and simplification of techniques and algorithms for non-intrusive load monitoring systems (NILM). The first steps in the implementation of a NILM system were already addressed, namely we are performing an extensive study on the characterization of the appliance’s electrical signature. The proposed parameters for defining an efficient electrical signature are the step-changes in the active and reactive power and the power factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almeida, A.M., Ben-Akiva, M., Pereira, F.C., Ghauche, A., Guevara, C.A., Niza, S., Zegras, C.: A framework for integrated modeling of urban systems. In: 45 ISOCARP Congress 2009 (2009)

    Google Scholar 

  2. Angrisani, L., Daponte, P., D’Apuzzo, M.: Wavelet network-based detection and classification of transients. IEEE Transactions on Instrumentation and Measurement 50(5), 1425–1435 (2001)

    Article  Google Scholar 

  3. Berenguer, M., Giordani, M., Giraud-By, F., Noury, N.: Automatic detection of activities of daily living from detecting and classifying electrical events on the residential power line. In: 10th International Conf. on e-health Networking, Applications and Services, pp. 29–32 (2008)

    Google Scholar 

  4. Berges, M., Goldman, E., Scott Mattews, H., Soibelman, L.: Training load monitoring algorithms on highly sub-metered home electricity consumption data. Tsinghua Science and Technology 13(S1), 406–411 (2008)

    Article  Google Scholar 

  5. Berges, M., Goldman, E., Scott Matthews, H., Soibelman, L.: Learning systems for electric consumption of buildings. In: ASCE International Workshop on Computing in Civil Engineering, Austin, Texas (2009)

    Google Scholar 

  6. Bijker, A.J., Xia, X., Zhang, J.: Active power residential non-intrusive appliance load monitoring system. In: IEEE AFRICON (2009)

    Google Scholar 

  7. Chang, H.-H., Lin, C.-L., Lee, J.-K.: Load identification in nonintrusive load monitoring using steady-state and turn-on transient energy algorithms. In: 14th Intl. Conf. on Computer Supported Cooperative Work in Design, pp. 27–32 (2010)

    Google Scholar 

  8. Chang, H.-H., Lin, C.-L., Yang, H.-T.: Load recognition for different loads with the same real power and reactive power in a non-intrusive load-monitoring system. In: 12th International Conf. on Computer Supported Cooperative Work in Design, pp. 1122–1127 (2008)

    Google Scholar 

  9. Cilibrasi, R., Vitnyi, P.M.B.: Clustering by compression. IEEE Transactions on Information Theory 51, 1523–1545 (2005)

    Article  Google Scholar 

  10. Cole, A.I., Albick, A.: Algorithm for non intrusive identification of residential appliances. In: Proc. of the 1998 IEEE Intl. Symposium on Circuits and Systems, ISCAS 1998, vol. 3, pp. 338–341 (1998)

    Google Scholar 

  11. Figueiredo, M., de Almeida, A., Ribeiro, B.: An experimental study on electrical signature identification of non-intrusive load monitoring (nilm) systems. Accepted by ICANNGA 2011 (2011)

    Google Scholar 

  12. Figueiredo, M., de Almeida, A., Ribeiro, B., Martins, A.: Extracting features from an electrical signal of a non-intrusive load monitoring system. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 210–217. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Hart, G.W.: Residential energy monitoring and computerized surveillance via utility power flows. IEEE Technology and Society Magazine (1989)

    Google Scholar 

  14. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. of the IEEE 80, 1870–1891 (1992)

    Article  Google Scholar 

  15. Joachims, T.: Making large-scale svm learning practical. In: Schlkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  16. Laughman, C., Lee, K., Cox, R., Shaw, S., Leeb, S., Norford, L., Armstrong, P.: Power signature analysis. IEEE Power and Energy Magazine 1(2), 56–63 (2003)

    Article  Google Scholar 

  17. Leeb, S.B.: A conjoint pattern recognition approach to nonintrusive load monitoring. PhD thesis, Massachusetts Institute of Technology (1993)

    Google Scholar 

  18. European Environment Agency. Energy and environment report. Technical report, European Union (2008)

    Google Scholar 

  19. Najmeddine, H., El Khamlichi Drissi, K., Pasquier, C., Faure, C., Kerroum, K., Diop, A., Jouannet, T., Michou, M.: State of art on load monitoring methods. In: IEEE 2nd Intl. Power and Energy Conf., PECon 2008, pp. 1256–1258 (2008)

    Google Scholar 

  20. Orji, U.A., Remscrim, Z., Laughman, C., Leeb, S.B., Wichakool, W., Schantz, C., Cox, R., Paris, J., Kirtley, J.L., Norford, L.K.: Fault detection and diagnostics for non-intrusive monitoring using motor harmonics. In: Applied Power Electronics Conf. and Exposition (APEC), pp. 1547–1554 (2010)

    Google Scholar 

  21. Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the flick of a switch: Detecting and classifying unique electrical events on the residential power line. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 271–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Costa Santos, C., Bernardes, J., Vitanyi, P.M.B., Antunes, L.: Clustering fetal heart rate tracings by compression. In: CBMS 2006: Proc. of the 19th IEEE Symposium on Computer-Based Medical Systems, pp. 685–690. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  23. Sawyer, R., Anderson, J., Foulks, E., Troxler, J., Cox, R.: Creating low-cost energy-management systems for homes using non-intrusive energy monitoring devices. In: Energy Conversion Congress and Exposition, ECCE 2009, pp. 3239–3246 (2009)

    Google Scholar 

  24. Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in kernel methods: support vector learning. MIT Press, Cambridge (1999)

    Google Scholar 

  25. Shrestha, A., Foulks, E.L., Cox, R.W.: Dynamic load shedding for shipboard power systems using the non-intrusive load monitor. In: Electric Ship Technologies Symposium, ESTS 2009, pp. 412–419 (2009)

    Google Scholar 

  26. Sultanem, F.: Using appliance signatures for monitoring residential loads at meter panel level. IEEE Transactions on Power Delivery 6, 1380–1385 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueiredo, M., de Almeida, A., Ribeiro, B. (2011). Non-intrusive Residential Electrical Consumption Traces. In: Novais, P., Preuveneers, D., Corchado, J.M. (eds) Ambient Intelligence - Software and Applications. Advances in Intelligent and Soft Computing, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19937-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19937-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19936-3

  • Online ISBN: 978-3-642-19937-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics