Using Machine Learning Techniques and Genomic/Proteomic Information from Known Databases for PPI Prediction | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 93))

  • 835 Accesses

Abstract

In current Proteomics, prediction of protein-protein interactions (PPI) is a crucial aim as these interactions take part in most essential biological processes. In this paper, we propose a new approach to PPI dataset processing based on the extraction information from well-known databases and the application of data mining techniques. This approach will provide very accurate Support Vector Machine models, trained using high-confidence positive and negative examples. Finally, our proposed model has been validated using experimental, computational and literature-collected datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Braun, P., et al.: An experimentally derived confidence score for binary protein-protein interactions. Nat. Meth. 6(1), 91–97 (2009)

    Article  Google Scholar 

  2. Chang, C., Lin, C.: LIBSVM: a Library for Support Vector Machines (2001), http://www.csie.ntu.edu.tw/cjlin/libsvm

  3. Cortes, C., Vapnik, V.: Support vector network. Mach. Learn. (1995)

    Google Scholar 

  4. Gilad-Bachrach, A.N.R., Tishby, N.: Margin based feature selection: Theory and algorithms. In: Proc. of the 21’st ICML, pp. 43–50 (2004)

    Google Scholar 

  5. Huang, C., et al.: Predicting protein-protein interactions from protein domains using a set cover approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(1) (2007)

    Google Scholar 

  6. Ito, T., et al.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. PNAS 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  7. Jansen, R., et al.: A bayesian networks approach for predicting Protein-Protein interactions from genomic data. Science 302(5644), 449–453 (2003)

    Article  MathSciNet  Google Scholar 

  8. Jiang, T., Keating, A.E.: AVID: an integrative framework for discovering functional relationships among proteins. BMC Bioinformatics 6 (2005)

    Google Scholar 

  9. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings 9th Int. Workshop on Machine Learning, pp. 249–256 (1992)

    Google Scholar 

  10. Patil, A., Nakamura, H.: Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC Bioinformatics 6(1), 100 (2005)

    Article  Google Scholar 

  11. Saeed, R., Deane, C.: An assessment of the uses of homologous interactions. Bioinformatics 24(5), 689–695 (2008)

    Article  Google Scholar 

  12. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000)

    Article  Google Scholar 

  13. Wang, H., Azuaje, F., Bodenreider, O., Dopazo, J.: Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships. In: CIBCB (2004)

    Google Scholar 

  14. Wu, X., et al.: Prediction of yeast protein-protein interaction network: insights from the gene ontology and annotations. Nucl. Acids Res. 34(7), 2137–2150 (2006)

    Article  Google Scholar 

  15. Yu, H., et al.: High-Quality binary protein interaction map of the yeast interactome network. Science 322(5898), 104–110 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urquiza, J.M., Rojas, I., Pomares, H., Herrera, L.J., Florido, J.P., Ortuño, F. (2011). Using Machine Learning Techniques and Genomic/Proteomic Information from Known Databases for PPI Prediction. In: Rocha, M.P., Rodríguez, J.M.C., Fdez-Riverola, F., Valencia, A. (eds) 5th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2011). Advances in Intelligent and Soft Computing, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19914-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19914-1_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19913-4

  • Online ISBN: 978-3-642-19914-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics