Diatom Classification with Novel Bell Based Classification Algorithm | SpringerLink
Skip to main content

Diatom Classification with Novel Bell Based Classification Algorithm

  • Conference paper
ICT Innovations 2010 (ICT Innovations 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 83))

Included in the following conference series:

Abstract

Diatoms are ideal indicators of certain physical-chemical parameters and in the relevant literature they are classified into one of the water quality classes (WQCs). Using information technologies methods, we can classify old and new diatoms directly from measured data. In this direction, a novel method for diatom classification is proposed in this paper. The classification models are induced by using modified bell fuzzy membership functions (MFs) in order to make more accurate models. An intensive comparison study of the fuzzy MFs distribution with the proposed method and the classical classification algorithms on the classification accuracy is studied. Based on this evaluation results, three models are presented and discussed. The experimental results have shown that the proposed algorithm remains interpretable, robust on data change and achieve highest classification accuracy. The obtain results from the classification models are verified with existing diatom ecological preference and for some diatoms new knowledge is added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Krstič, S.: Description of sampling sites. FP6-project TRABOREMA: Deliverable 2.2 (2005)

    Google Scholar 

  2. Levkov, Z., Krstič, S., Metzeltin, D., Nakov, T.: Diatoms of Lakes Prespa and Ohrid (Macedonia). Iconographia Diatomologica 16, 603 (2006)

    Google Scholar 

  3. Kóczy, L.T., Vámos, T., Biró, G.: Fuzzy signatures. In: EUROFUSE-SIC, pp. 210–217 (1999)

    Google Scholar 

  4. Naumoski, A., Kocev, D., Atanasova, N., Mitreski, K., Krtić, S., Džeroski, S.: Predicting chemical parameters of water quality form diatoms abundance in Lake Prespa and its tributaries. In: 4th International ICSC Symposium on Information Technologies in Environmental Engineering - ITEE 2009, Thessaloniki, Greece, pp. 264–277. Springer, Heidelberg (2009)

    Google Scholar 

  5. Nikravesh, M.: Soft computing for perception-based decision processing and analysis: web-based BISC-DSS. Studies in Fuzziness and Soft Computing, vol. 164, pp. 93–188. Springer, Heidelberg (2005)

    Google Scholar 

  6. TRABOREMA Project WP3.: EC FP6-INCO project no. INCO-CT-2004-509177 (2005-2007)

    Google Scholar 

  7. Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debrecen 10, 69–81 (1963)

    MathSciNet  MATH  Google Scholar 

  8. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138, 221–254 (2003)

    Article  MathSciNet  Google Scholar 

  9. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets and Systems 69(2), 125–139 (1995)

    Article  MathSciNet  Google Scholar 

  10. Quinlan, R.J.: Decision trees and decision making. IEEE Transactions on Systems, Man, and Cybernetics 20(2), 339–346 (1990)

    Article  Google Scholar 

  11. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 1–14 (1998)

    Article  Google Scholar 

  12. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  13. Wang, X., Chen, B., Olan, G., Ye, F.: On the optimization of fuzzy decision trees. Fuzzy Sets and Systems 112, 117–125 (2000)

    Article  MathSciNet  Google Scholar 

  14. Suárez, A., Lutsko, J.F.: Globally optimal fuzzy decision trees for classification and regression. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1297–1311 (1999)

    Article  Google Scholar 

  15. Kocev, D., Naumoski, A., Mitreski, K., Krstić, S., Džeroski, S.: Learning habitat models for the diatom community in Lake Prespa. Journal of Ecological Modelling 221(2), 330–337 (2009)

    Article  Google Scholar 

  16. Krammer, K., Lange-Bertalot, H.: Die Ssswasserflora von Mitteleuropa 2: Bacillariophyceae. 1 Teil, p. 876. Gustav Fischer-Verlag, Stuttgart (1986)

    Google Scholar 

  17. Van Der Werff, A., Huls, H.: Diatomeanflora van Nederland. Abcoude - De Hoef (1957, 1974)

    Google Scholar 

  18. Stroemer, E.F., Smol, J.P.: The diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  19. Van Dam, H., Martens, A., Sinkeldam, J.: A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28(1), 117–133 (1994)

    Article  Google Scholar 

  20. Huang, Z.H., Gedeon, T.D., Nikravesh, M.: Pattern Trees Induction: A New Machine Learning Method. IEEE Transaction on Fuzzy Systems 16(3), 958–970 (2008)

    Article  Google Scholar 

  21. Gold, C., Feurtet-Mazel, A., Coste, M., Boudou, A.: Field transfer of periphytic diatom communities to assess shortterm structural effects of metals (Cd Zn) in rivers. Water Research 36, 3654–3664 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naumoski, A., Mitreski, K. (2011). Diatom Classification with Novel Bell Based Classification Algorithm. In: Gusev, M., Mitrevski, P. (eds) ICT Innovations 2010. ICT Innovations 2010. Communications in Computer and Information Science, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19325-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19325-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19324-8

  • Online ISBN: 978-3-642-19325-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics