Abstract
We give algorithms for finding graph clusters and drawing graphs, highlighting local community structure within the context of a larger network. For a given graph G, we use the personalized PageRank vectors to determine a set of clusters, by optimizing the jumping parameter α subject to several cluster variance measures in order to capture the graph structure according to PageRank. We then give a graph visualization algorithm for the clusters using PageRank-based coordinates. Several drawings of real-world data are given, illustrating the partition and local community structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, R., Barabási, A.-L., Jeong, H.: Diameter of the World Wide Web. Nature 401, 130–131 (1999)
Andersen, R., Chung, F.: Detecting sharp drops in PageRank and a simplified local partitioning algorithm. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 1–12. Springer, Heidelberg (2007)
Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank vectors. In: Proceedings of the 47th Annual IEEE Symposium on Foundation of Computer Science (FOCS 2006), pp. 475–486 (2006)
Brandes, U., Cornelsen, S.: Visual ranking of link structures. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 222–233. Springer, Heidelberg (2001)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)
Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the Web. Computer Networks 33, 1–6 (2000)
Chung, F., Horn, P., Tsiatas, A.: Distributing antidote using PageRank vectors. Internet Mathematics 6(2), 237–254 (2009)
Chung, F., Zhao, W.: A sharp PageRank algorithm with applications to edge ranking and graph sparsification (Preprint), http://www.math.ucsd.edu/~fan/wp/sharp.pdf
Dyer, M.E., Frieze, A.M.: A simple heuristic for the p-centre problem. Operations Research Letters 3(6), 285–288 (1985)
Eades, P., Feng, Q.: Multilevel visualization of clustered graphs. In: Proceedings of the International Symposium on Graph Drawing, pp. 101–112 (1996)
Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30(7), 1575–1584 (2002)
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM 1999), pp. 251–262 (1999)
Fortune, S.: A sweepline algorithm for Voronoi diagrams. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 313–322 (1986)
Gansner, E., North, C.: An open graph visualization system and its applications to software engineering. Software — Practice and Experience 30(11), 1203–1233 (2000)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)
Guruswami, V., Micciancio, D., Regev, O.: The complexity of the covering radius problem on lattices and codes. Computational Complexity 14(2), 90–120 (2005)
Harel, D., Koren, Y.: Graph drawing by high-dimensional embedding. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002)
Jeh, G., Widom, J.: Scaling personalized Web search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 271–279 (2003)
Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31(1), 7–15 (1989)
Lloyd, S.: Least square quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)
Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54(4), 396–405 (2003)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)
Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R.: Bunch: a clustering tool for the recovery and maintenance of software system structures. In: Proceedings of the IEEE International Conference on Software Maintenance, pp. 50–59 (1999)
Moody, J.: Peer influence groups: identifying dense clusters in large networks. Social Networks 23(4), 261–283 (2001)
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)
Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. Advances in Neural Information Processing Systems 14(2), 849–856 (2002)
Noack, A.: Modularity clustering is force-directed layout. Physical Review E 79, 026102 (2009)
Parker, G., Franck, G., Ware, C.: Visualization of large nested graphs in 3D: navigation and interaction. Journal of Visual Languages and Computing 9(3), 299–317 (1998)
Rudelson, M., Vershynin, R.: Sampling from large matrices: An approach through geometric functional analysis. Journal of the ACM 54(4), Article 21 (2007)
Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Graham, F.C., Tsiatas, A. (2010). Finding and Visualizing Graph Clusters Using PageRank Optimization. In: Kumar, R., Sivakumar, D. (eds) Algorithms and Models for the Web-Graph. WAW 2010. Lecture Notes in Computer Science, vol 6516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18009-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-18009-5_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18008-8
Online ISBN: 978-3-642-18009-5
eBook Packages: Computer ScienceComputer Science (R0)