Combination of Local and Global Features for Near-Duplicate Detection | SpringerLink
Skip to main content

Combination of Local and Global Features for Near-Duplicate Detection

  • Conference paper
Advances in Multimedia Modeling (MMM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6523))

Included in the following conference series:

Abstract

This paper presents a new method to combine local and global features for near-duplicate images detection. It mainly consists of three steps. Firstly, the keypoints of images are extracted and preliminarily matched. Secondly, the matched keypoints are voted for estimation of affine transform to reduce false matching keypoints. Finally, to further confirm the matching, the Local Binary Pattern (LBP) and color histograms of areas formed by matched keypoints in two images are compared. This method has the advantage for handling the case when there are only a few matched keypoints. The proposed algorithm has been tested on Columbia dataset and compared quantitatively with the RANdom SAmple Consensus (RANSAC) and the Scale-Rotation Invariant Pattern Entropy (SR-PE) methods. The results turn out that the proposed method compares favorably against the state-of-the-arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust Wide Baseline Stereo from Maximally Stable Regions. In: British Machine Vision Conferene, pp. 384–396 (2002)

    Google Scholar 

  2. Mikoljczyk, K., Schmid, C.: Scale and Affine Invariant Interest Point Detectors. International Journal of Computer Vision 60, 63–86 (2004)

    Article  Google Scholar 

  3. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  4. Ke, Y., Sukthankar, R.: PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. In: CVPR, vol. 2, pp. 506–513 (2004)

    Google Scholar 

  5. Ke, Y., Sukthankar, R., Huston, L.: Efficient Near-Duplicate Detection and Sub-Image Retrieval. In: ACM Multimedia, pp. 869–876 (2004)

    Google Scholar 

  6. Zhao, W.L., Ngo, C.W., Tan, H.K., Wu, X.: Near-Duplicate Keyframe Identification with Interest Point Matching and Pattern Learning. IEEE. Trans. on Multimedia 9(5), 1037–1048 (2007)

    Article  Google Scholar 

  7. Ngo, C.W., Zhao, W.L., Jiang, Y.G.: Fast Tracking of Near-Duplicate Keyframes in Broadcast Domain with Transitivity Propagation. In: ACM Multimedia, pp. 845–854 (2006)

    Google Scholar 

  8. Zhao, W.L., Ngo, C.W.: Scale-Rotation Invariant Pattern Entropy for Keypoint-based Near-Duplicate Detection. IEEE Trans. on Image Processing 18(2), 412–423 (2009)

    Article  MathSciNet  Google Scholar 

  9. Zhu, J., Hoi, S.C.H., Lyu, M.R., Yan, S.: Near-Duplicate Keyframe Retrieval by Nonrigid Image Matching. In: MM 2008, pp. 41–50 (2008)

    Google Scholar 

  10. Qamra, A., Meng, Y., Chang, E.Y.: Enhanced Perceptual Distance Functions and Indexing for Image Replica Recognition. PAMI 27(3), 379–391 (2005)

    Article  Google Scholar 

  11. Zhang, D.Q., Chang, S.F.: Detecting Image Near-Duplicate by Stochastic Attributed Relational Graph Matching with Learning. In: ACM MM 2004, pp. 877–884 (2004)

    Google Scholar 

  12. Zhao, W., Jiang, Y., Ngo, C.: Keyframe Retrieval by Keypoints: Can Point-to-point Matching Help? In: CIVR 2006, pp. 72–81 (2006)

    Google Scholar 

  13. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Kadir, F.S.T., Gool, L.V.: A Comparison of Affine Region Detectors. International Journal of Computer Vision 65(1/2), 43–72 (2005)

    Article  Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  15. Fleck, D., Duric, Z.: Affine Invariant-Based Classification of Inliers and Outliers for Image Matching. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 407–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. TREC Video Retrieval Evaluation (TRECVID) (2010), http://trecvid.nist.gov/

  17. Ojala, T., Pietikainen, M.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(7), 791–981 (2002)

    Article  Google Scholar 

  18. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)

    MATH  Google Scholar 

  19. http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Hou, Z., Leman, K., Pham, N.T., Chua, T., Chang, R. (2011). Combination of Local and Global Features for Near-Duplicate Detection. In: Lee, KT., Tsai, WH., Liao, HY.M., Chen, T., Hsieh, JW., Tseng, CC. (eds) Advances in Multimedia Modeling. MMM 2011. Lecture Notes in Computer Science, vol 6523. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17832-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17832-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17831-3

  • Online ISBN: 978-3-642-17832-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics