Towards Spatio-Temporal Pattern Recognition Using Evolving Spiking Neural Networks | SpringerLink
Skip to main content

Towards Spatio-Temporal Pattern Recognition Using Evolving Spiking Neural Networks

  • Conference paper
Neural Information Processing. Theory and Algorithms (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Included in the following conference series:

  • 2615 Accesses

Abstract

An extension of an evolving spiking neural network (eSNN) is proposed that enables the method to process spatio-temporal information. In this extension, an additional layer is added to the network architecture that transforms a spatio-temporal input pattern into a single intermediate high-dimensional network state which in turn is mapped into a desired class label using a fast one-pass learning algorithm. The intermediate state is represented by a novel probabilistic reservoir computing approach in which a stochastic neural model introduces a non-deterministic component into a liquid state machine. A proof of concept is presented demonstrating an improved separation capability of the reservoir and consequently its suitability for an eSNN extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bohte, S.M., Kok, J.N., Poutré, J.A.L.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1-4), 17–37 (2002)

    Article  MATH  Google Scholar 

  2. Clopath, C., Jolivet, R., Rauch, A., Lüscher, H.R., Gerstner, W.: Predicting neuronal activity with simple models of the threshold type: Adaptive exponential integrate-and-fire model with two compartments. Neurocomput. 70(10-12), 1668–1673 (2007)

    Article  Google Scholar 

  3. Destexhe, A., Contreras, D.: Neuronal computations with stochastic network states. Science 314(5796), 85–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  5. Grzyb, B.J., Chinellato, E., Wojcik, G.M., Kaminski, W.A.: Which model to use for the liquid state machine? In: IJCNN 2009: Proceedings of the 2009 international joint conference on Neural Networks, pp. 1692–1698. IEEE Press, Piscataway (2009)

    Google Scholar 

  6. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (2007)

    MATH  Google Scholar 

  7. Kasabov, N.: The ECOS framework and the ECO learning method for evolving connectionist systems. JACIII 2(6), 195–202 (1998)

    Article  Google Scholar 

  8. Kasabov, N.: To spike or not to spike: A probabilistic spiking neuron model. Neural Networks 23(1), 16–19 (2010)

    Article  Google Scholar 

  9. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  10. Maass, W., Zador, A.: Dynamic stochastic synapses as computational units. In: Advances in Neural Information Processing Systems, pp. 903–917. MIT Press, Cambridge (1998)

    Google Scholar 

  11. Schliebs, S., Defoin-Platel, M., Kasabov, N.: Analyzing the dynamics of the simultaneous feature and parameter optimization of an evolving spiking neural network. In: International Joint Conference on Neural Networks, IEEE - INNS - ENNS. IEEE Computer Society Press, Barcelona (2010)

    Google Scholar 

  12. Schliebs, S., Defoin-Platel, M., Worner, S., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models. Neural Networks 22(5-6), 623–632 (2009)

    Article  Google Scholar 

  13. Schrauwen, B., Verstraeten, D., Campenhout, J.V.: An overview of reservoir computing: theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007)

    Google Scholar 

  14. Thorpe, S.J.: How can the human visual system process a natural scene in under 150ms? On the role of asynchronous spike propagation. In: ESANN. D-Facto public (1997)

    Google Scholar 

  15. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  16. Wysoski, S.G., Benuskova, L., Kasabov, N.K.: Adaptive learning procedure for a network of spiking neurons and visual pattern recognition. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1133–1142. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Yamazaki, T., Tanaka, S.: 2007 special issue: The cerebellum as a liquid state machine. Neural Netw. 20(3), 290–297 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schliebs, S., Nuntalid, N., Kasabov, N. (2010). Towards Spatio-Temporal Pattern Recognition Using Evolving Spiking Neural Networks. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics